通过基底温控气相传输沉积法实现高效 Sb2(S,Se)3 薄膜太阳能电池

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Deyang Qin , Panpan Yang , Yuxin Pan , Youyang Wang , Yanlin Pan , Guoen Weng , Xiaobo Hu , Jiahua Tao , Junhao Chu , Hidefumi Akiyama , Shaoqiang Chen
{"title":"通过基底温控气相传输沉积法实现高效 Sb2(S,Se)3 薄膜太阳能电池","authors":"Deyang Qin ,&nbsp;Panpan Yang ,&nbsp;Yuxin Pan ,&nbsp;Youyang Wang ,&nbsp;Yanlin Pan ,&nbsp;Guoen Weng ,&nbsp;Xiaobo Hu ,&nbsp;Jiahua Tao ,&nbsp;Junhao Chu ,&nbsp;Hidefumi Akiyama ,&nbsp;Shaoqiang Chen","doi":"10.1016/j.solmat.2024.113232","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony chalcogenide (Sb<sub>2</sub>(S, Se)<sub>3</sub>) semiconductor has recently emerged as a popular photovoltaic material for thin-film solar cells because of its high light absorption coefficient and tunable absorption band gap. The vapour transport deposition (VTD) approach has shown promise in fabricating Sb<sub>2</sub>(S, Se)<sub>3</sub> solar cells. However, conventional VTD depends on varying substrate positions for managing the temperature differential between source and substrate. This phenomenon leads to unstable film flaws that trigger a decline in open-circuit voltage (<em>V</em><sub>OC</sub>) and the development of profound-level defects. Therefore, a novel method for fabricating Sb<sub>2</sub>(S, Se)<sub>3</sub> solar cells based on a double-temperature evaporation furnace named substrate temperature–controlled vapour transport deposition method (STC-VTD) is presented in this study. The initial application of the modified VTD method yielded a solar cell with a power conversion efficiency (PCE) of 7.56 %, which is the highest PCE obtained through single evaporation VTD. Deep-level transient spectroscopy measurements reveal that the defect levels generated in the solar cells are passivated via the STC-VTD method. This work proposes substrate temperature–independent control for other physical vapour preparation methods, paving a new direction for further applications of vapour transport technology.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113232"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High efficiency Sb2(S, Se)3 thin-film solar cells by substrate-temperature-controlled vapor transport deposition method\",\"authors\":\"Deyang Qin ,&nbsp;Panpan Yang ,&nbsp;Yuxin Pan ,&nbsp;Youyang Wang ,&nbsp;Yanlin Pan ,&nbsp;Guoen Weng ,&nbsp;Xiaobo Hu ,&nbsp;Jiahua Tao ,&nbsp;Junhao Chu ,&nbsp;Hidefumi Akiyama ,&nbsp;Shaoqiang Chen\",\"doi\":\"10.1016/j.solmat.2024.113232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimony chalcogenide (Sb<sub>2</sub>(S, Se)<sub>3</sub>) semiconductor has recently emerged as a popular photovoltaic material for thin-film solar cells because of its high light absorption coefficient and tunable absorption band gap. The vapour transport deposition (VTD) approach has shown promise in fabricating Sb<sub>2</sub>(S, Se)<sub>3</sub> solar cells. However, conventional VTD depends on varying substrate positions for managing the temperature differential between source and substrate. This phenomenon leads to unstable film flaws that trigger a decline in open-circuit voltage (<em>V</em><sub>OC</sub>) and the development of profound-level defects. Therefore, a novel method for fabricating Sb<sub>2</sub>(S, Se)<sub>3</sub> solar cells based on a double-temperature evaporation furnace named substrate temperature–controlled vapour transport deposition method (STC-VTD) is presented in this study. The initial application of the modified VTD method yielded a solar cell with a power conversion efficiency (PCE) of 7.56 %, which is the highest PCE obtained through single evaporation VTD. Deep-level transient spectroscopy measurements reveal that the defect levels generated in the solar cells are passivated via the STC-VTD method. This work proposes substrate temperature–independent control for other physical vapour preparation methods, paving a new direction for further applications of vapour transport technology.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"280 \",\"pages\":\"Article 113232\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005440\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

砷化锑(Sb2(S, Se)3)半导体因其高光吸收系数和可调的吸收带隙,最近已成为薄膜太阳能电池的一种流行光电材料。气相传输沉积(VTD)方法在制造 Sb2(S,Se)3 太阳能电池方面已显示出良好的前景。然而,传统的 VTD 依赖于不同的基底位置来管理源和基底之间的温差。这种现象会导致不稳定的薄膜缺陷,引发开路电压(VOC)下降和深层次缺陷的产生。因此,本研究提出了一种基于双温蒸发炉的新型 Sb2(S, Se)3 太阳能电池制造方法,并将其命名为 "基底温控汽相传输沉积法(STC-VTD)"。改进型 VTD 方法的初步应用产生了一种功率转换效率 (PCE) 为 7.56 % 的太阳能电池,这是通过单蒸发 VTD 获得的最高 PCE。深层瞬态光谱测量结果表明,通过 STC-VTD 方法,太阳能电池中产生的缺陷层被钝化。这项工作为其他物理蒸气制备方法提出了与衬底温度无关的控制方法,为蒸气传输技术的进一步应用铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High efficiency Sb2(S, Se)3 thin-film solar cells by substrate-temperature-controlled vapor transport deposition method
Antimony chalcogenide (Sb2(S, Se)3) semiconductor has recently emerged as a popular photovoltaic material for thin-film solar cells because of its high light absorption coefficient and tunable absorption band gap. The vapour transport deposition (VTD) approach has shown promise in fabricating Sb2(S, Se)3 solar cells. However, conventional VTD depends on varying substrate positions for managing the temperature differential between source and substrate. This phenomenon leads to unstable film flaws that trigger a decline in open-circuit voltage (VOC) and the development of profound-level defects. Therefore, a novel method for fabricating Sb2(S, Se)3 solar cells based on a double-temperature evaporation furnace named substrate temperature–controlled vapour transport deposition method (STC-VTD) is presented in this study. The initial application of the modified VTD method yielded a solar cell with a power conversion efficiency (PCE) of 7.56 %, which is the highest PCE obtained through single evaporation VTD. Deep-level transient spectroscopy measurements reveal that the defect levels generated in the solar cells are passivated via the STC-VTD method. This work proposes substrate temperature–independent control for other physical vapour preparation methods, paving a new direction for further applications of vapour transport technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信