Jacob Wurm , Samuel Tyler Fujisawa-Phillips , Ilia L. Rasskazov
{"title":"低辐射涂层的优化设计","authors":"Jacob Wurm , Samuel Tyler Fujisawa-Phillips , Ilia L. Rasskazov","doi":"10.1016/j.solmat.2024.113267","DOIUrl":null,"url":null,"abstract":"<div><div>We report a comprehensive numerical study demonstrating surprisingly good photoenergetic performance of low-emissivity (low-E) coatings comprised of just 5 layers. Simulations are performed within the transfer-matrix framework in conjunction with multiobjective optimization using a genetic algorithm. We show that upon utilization of conventional dielectric materials with only one silver layer, all that arranged in a multilayered stack with optimal thickness, large light-to-solar gain (LSG) ratio and visible transmittance (VT) up to 2.4 and 0.72, respectively, with neutral color (<span><math><mrow><msup><mi>a</mi><mo>∗</mo></msup><mo>=</mo><mo>−</mo><mn>3</mn><mo>±</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msup><mi>b</mi><mo>∗</mo></msup><mo>=</mo><mo>−</mo><mn>5</mn><mo>±</mo><mn>1</mn></mrow></math></span> in CIELAB color space) can be achieved. Such an outstanding behavior of single-metal glazing is explained by the emergence of open Fabry-Pérot cavity (so-called pseudo-cavity), the unusual concept for the low-E industry centered around conventional metal-dielectric-metal Fabry-Pérot cavities. Our work highlights the importance of large-scale computational optimization for the design of efficient low-E coatings and provides a useful guide for future developments in this field.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113267"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design of low-emissivity coatings\",\"authors\":\"Jacob Wurm , Samuel Tyler Fujisawa-Phillips , Ilia L. Rasskazov\",\"doi\":\"10.1016/j.solmat.2024.113267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a comprehensive numerical study demonstrating surprisingly good photoenergetic performance of low-emissivity (low-E) coatings comprised of just 5 layers. Simulations are performed within the transfer-matrix framework in conjunction with multiobjective optimization using a genetic algorithm. We show that upon utilization of conventional dielectric materials with only one silver layer, all that arranged in a multilayered stack with optimal thickness, large light-to-solar gain (LSG) ratio and visible transmittance (VT) up to 2.4 and 0.72, respectively, with neutral color (<span><math><mrow><msup><mi>a</mi><mo>∗</mo></msup><mo>=</mo><mo>−</mo><mn>3</mn><mo>±</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msup><mi>b</mi><mo>∗</mo></msup><mo>=</mo><mo>−</mo><mn>5</mn><mo>±</mo><mn>1</mn></mrow></math></span> in CIELAB color space) can be achieved. Such an outstanding behavior of single-metal glazing is explained by the emergence of open Fabry-Pérot cavity (so-called pseudo-cavity), the unusual concept for the low-E industry centered around conventional metal-dielectric-metal Fabry-Pérot cavities. Our work highlights the importance of large-scale computational optimization for the design of efficient low-E coatings and provides a useful guide for future developments in this field.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"280 \",\"pages\":\"Article 113267\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005798\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
We report a comprehensive numerical study demonstrating surprisingly good photoenergetic performance of low-emissivity (low-E) coatings comprised of just 5 layers. Simulations are performed within the transfer-matrix framework in conjunction with multiobjective optimization using a genetic algorithm. We show that upon utilization of conventional dielectric materials with only one silver layer, all that arranged in a multilayered stack with optimal thickness, large light-to-solar gain (LSG) ratio and visible transmittance (VT) up to 2.4 and 0.72, respectively, with neutral color ( and in CIELAB color space) can be achieved. Such an outstanding behavior of single-metal glazing is explained by the emergence of open Fabry-Pérot cavity (so-called pseudo-cavity), the unusual concept for the low-E industry centered around conventional metal-dielectric-metal Fabry-Pérot cavities. Our work highlights the importance of large-scale computational optimization for the design of efficient low-E coatings and provides a useful guide for future developments in this field.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.