Chima J. Iheaturu , Samuel Hepner , Jonathan L. Batchelor , Georges A. Agonvonon , Felicia O. Akinyemi , Vladimir R. Wingate , Chinwe Ifejika Speranza
{"title":"整合无人机激光雷达和多光谱数据,评估西非森林片区的森林状况并绘制干扰严重程度图","authors":"Chima J. Iheaturu , Samuel Hepner , Jonathan L. Batchelor , Georges A. Agonvonon , Felicia O. Akinyemi , Vladimir R. Wingate , Chinwe Ifejika Speranza","doi":"10.1016/j.ecoinf.2024.102876","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicle (UAV) technologies have emerged as promising tools to improve forest ecosystem assessments. These technologies offer high-resolution data that can significantly enhance evaluations of forest structure, condition, and disturbance severity. UAV sensors such as LiDAR and multispectral provide complementary information about forest attributes, capturing structural and spectral details, yet their integration for comprehensive forest assessment remains understudied. In this paper, we explored the potential of combining UAV LiDAR and multispectral data to assess the disturbance severity of a West African forest patch (Benin). We developed an integrated disturbance index (IDI) that fuses structural properties from LiDAR data and spectral characteristics from multispectral vegetation indices through principal component analysis (PCA). This allowed us to delineate low (> 0.65), medium (0.35–0.65), and high (< 0.35) forest disturbance levels. We applied the IDI to the 560-ha Ewe-Adakplame relict forest in Benin, West Africa, and achieved 95 % overall accuracy in disturbance detection, outperforming both LiDAR-only (80 %) and multispectral-only (75 %) approaches. The IDI revealed that 23 % of the forest area has experienced low disturbance, while 28 % and 49 % face medium and high disturbance levels, respectively. These findings indicate that more than three-quarters of this relict forest exhibits medium to high levels of disturbance, underscoring the urgent need for tailored conservation strategies to strengthen forest resilience. This method's ability to differentiate disturbance levels can inform resource allocation, prioritize conservation efforts, and guide the development of site-specific management plans. The integration of UAV LiDAR and multispectral data demonstrated here has potential for application across diverse tropical forest patches, providing an effective means to monitor forest health, assess disturbance severity, and support data-driven decision-making in forest conservation and sustainable management.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102876"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating UAV LiDAR and multispectral data to assess forest status and map disturbance severity in a West African forest patch\",\"authors\":\"Chima J. Iheaturu , Samuel Hepner , Jonathan L. Batchelor , Georges A. Agonvonon , Felicia O. Akinyemi , Vladimir R. Wingate , Chinwe Ifejika Speranza\",\"doi\":\"10.1016/j.ecoinf.2024.102876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicle (UAV) technologies have emerged as promising tools to improve forest ecosystem assessments. These technologies offer high-resolution data that can significantly enhance evaluations of forest structure, condition, and disturbance severity. UAV sensors such as LiDAR and multispectral provide complementary information about forest attributes, capturing structural and spectral details, yet their integration for comprehensive forest assessment remains understudied. In this paper, we explored the potential of combining UAV LiDAR and multispectral data to assess the disturbance severity of a West African forest patch (Benin). We developed an integrated disturbance index (IDI) that fuses structural properties from LiDAR data and spectral characteristics from multispectral vegetation indices through principal component analysis (PCA). This allowed us to delineate low (> 0.65), medium (0.35–0.65), and high (< 0.35) forest disturbance levels. We applied the IDI to the 560-ha Ewe-Adakplame relict forest in Benin, West Africa, and achieved 95 % overall accuracy in disturbance detection, outperforming both LiDAR-only (80 %) and multispectral-only (75 %) approaches. The IDI revealed that 23 % of the forest area has experienced low disturbance, while 28 % and 49 % face medium and high disturbance levels, respectively. These findings indicate that more than three-quarters of this relict forest exhibits medium to high levels of disturbance, underscoring the urgent need for tailored conservation strategies to strengthen forest resilience. This method's ability to differentiate disturbance levels can inform resource allocation, prioritize conservation efforts, and guide the development of site-specific management plans. The integration of UAV LiDAR and multispectral data demonstrated here has potential for application across diverse tropical forest patches, providing an effective means to monitor forest health, assess disturbance severity, and support data-driven decision-making in forest conservation and sustainable management.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"84 \",\"pages\":\"Article 102876\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124004187\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004187","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Integrating UAV LiDAR and multispectral data to assess forest status and map disturbance severity in a West African forest patch
Unmanned aerial vehicle (UAV) technologies have emerged as promising tools to improve forest ecosystem assessments. These technologies offer high-resolution data that can significantly enhance evaluations of forest structure, condition, and disturbance severity. UAV sensors such as LiDAR and multispectral provide complementary information about forest attributes, capturing structural and spectral details, yet their integration for comprehensive forest assessment remains understudied. In this paper, we explored the potential of combining UAV LiDAR and multispectral data to assess the disturbance severity of a West African forest patch (Benin). We developed an integrated disturbance index (IDI) that fuses structural properties from LiDAR data and spectral characteristics from multispectral vegetation indices through principal component analysis (PCA). This allowed us to delineate low (> 0.65), medium (0.35–0.65), and high (< 0.35) forest disturbance levels. We applied the IDI to the 560-ha Ewe-Adakplame relict forest in Benin, West Africa, and achieved 95 % overall accuracy in disturbance detection, outperforming both LiDAR-only (80 %) and multispectral-only (75 %) approaches. The IDI revealed that 23 % of the forest area has experienced low disturbance, while 28 % and 49 % face medium and high disturbance levels, respectively. These findings indicate that more than three-quarters of this relict forest exhibits medium to high levels of disturbance, underscoring the urgent need for tailored conservation strategies to strengthen forest resilience. This method's ability to differentiate disturbance levels can inform resource allocation, prioritize conservation efforts, and guide the development of site-specific management plans. The integration of UAV LiDAR and multispectral data demonstrated here has potential for application across diverse tropical forest patches, providing an effective means to monitor forest health, assess disturbance severity, and support data-driven decision-making in forest conservation and sustainable management.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.