利用行动直方图衡量学生的行为参与度

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ahmed Abdelkawy , Aly Farag , Islam Alkabbany , Asem Ali , Chris Foreman , Thomas Tretter , Nicholas Hindy
{"title":"利用行动直方图衡量学生的行为参与度","authors":"Ahmed Abdelkawy ,&nbsp;Aly Farag ,&nbsp;Islam Alkabbany ,&nbsp;Asem Ali ,&nbsp;Chris Foreman ,&nbsp;Thomas Tretter ,&nbsp;Nicholas Hindy","doi":"10.1016/j.patrec.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose a novel method for assessing students’ behavioral engagement by representing student’s actions and their frequencies over an arbitrary time interval as a histogram of actions. This histogram and the student’s gaze are utilized as input to a classifier that determines whether the student is engaged or not. For action recognition, we use students’ skeletons to model their postures and upper body movements. To learn the dynamics of a student’s upper body, a 3D-CNN model is developed. The trained 3D-CNN model recognizes actions within every 2-minute video segment then these actions are used to build the histogram of actions. To evaluate the proposed framework, we build a dataset consisting of 1414 video segments annotated with 13 actions and 963 2-minute video segments annotated with two engagement levels. Experimental results indicate that student actions can be recognized with top-1 accuracy 86.32% and the proposed framework can capture the average engagement of the class with a 90% F1-score.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 337-344"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring student behavioral engagement using histogram of actions\",\"authors\":\"Ahmed Abdelkawy ,&nbsp;Aly Farag ,&nbsp;Islam Alkabbany ,&nbsp;Asem Ali ,&nbsp;Chris Foreman ,&nbsp;Thomas Tretter ,&nbsp;Nicholas Hindy\",\"doi\":\"10.1016/j.patrec.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we propose a novel method for assessing students’ behavioral engagement by representing student’s actions and their frequencies over an arbitrary time interval as a histogram of actions. This histogram and the student’s gaze are utilized as input to a classifier that determines whether the student is engaged or not. For action recognition, we use students’ skeletons to model their postures and upper body movements. To learn the dynamics of a student’s upper body, a 3D-CNN model is developed. The trained 3D-CNN model recognizes actions within every 2-minute video segment then these actions are used to build the histogram of actions. To evaluate the proposed framework, we build a dataset consisting of 1414 video segments annotated with 13 actions and 963 2-minute video segments annotated with two engagement levels. Experimental results indicate that student actions can be recognized with top-1 accuracy 86.32% and the proposed framework can capture the average engagement of the class with a 90% F1-score.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 337-344\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524003088\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003088","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种评估学生行为参与度的新方法,即将学生在任意时间间隔内的动作及其频率表示为动作直方图。该直方图和学生的注视被用作分类器的输入,由分类器判断学生是否参与。在动作识别方面,我们使用学生的骨骼来模拟他们的姿势和上半身动作。为了学习学生上半身的动态,我们开发了一个 3D-CNN 模型。经过训练的 3D-CNN 模型可识别每 2 分钟视频片段中的动作,然后利用这些动作建立动作直方图。为了评估所提出的框架,我们建立了一个数据集,其中包括 1414 个标注了 13 个动作的视频片段和 963 个标注了两个参与度的 2 分钟视频片段。实验结果表明,学生动作的识别准确率最高可达 86.32%,建议的框架可以捕捉全班学生的平均参与度,F1 分数高达 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring student behavioral engagement using histogram of actions
In this work, we propose a novel method for assessing students’ behavioral engagement by representing student’s actions and their frequencies over an arbitrary time interval as a histogram of actions. This histogram and the student’s gaze are utilized as input to a classifier that determines whether the student is engaged or not. For action recognition, we use students’ skeletons to model their postures and upper body movements. To learn the dynamics of a student’s upper body, a 3D-CNN model is developed. The trained 3D-CNN model recognizes actions within every 2-minute video segment then these actions are used to build the histogram of actions. To evaluate the proposed framework, we build a dataset consisting of 1414 video segments annotated with 13 actions and 963 2-minute video segments annotated with two engagement levels. Experimental results indicate that student actions can be recognized with top-1 accuracy 86.32% and the proposed framework can capture the average engagement of the class with a 90% F1-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信