具有分布不确定性的开关随机系统的高效策略合成

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Ibon Gracia , Dimitris Boskos , Morteza Lahijanian , Luca Laurenti , Manuel Mazo Jr.
{"title":"具有分布不确定性的开关随机系统的高效策略合成","authors":"Ibon Gracia ,&nbsp;Dimitris Boskos ,&nbsp;Morteza Lahijanian ,&nbsp;Luca Laurenti ,&nbsp;Manuel Mazo Jr.","doi":"10.1016/j.nahs.2024.101554","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are <span><math><mrow><mi>ɛ</mi><mo>−</mo></mrow></math></span>close, in the Wasserstein distance sense, to a nominal one. We propose algorithms for the efficient synthesis of distributionally robust control strategies that maximize the satisfaction probability of reach-avoid specifications with either a given or an arbitrary (not specified) time horizon, i.e., unbounded-time reachability. The framework consists of two main steps: finite abstraction and control synthesis. First, we construct a finite abstraction of the switched stochastic system as a <em>robust Markov decision process</em> (robust MDP) that encompasses both the stochasticity of the system and the uncertainty in the noise distribution. Then, we synthesize a strategy that is robust to the distributional uncertainty on the resulting robust MDP. We employ techniques from optimal transport and stochastic programming to reduce the strategy synthesis problem to a set of linear programs, and propose a tailored and efficient algorithm to solve them. The resulting strategies are correctly refined into switching strategies for the original stochastic system. We illustrate the efficacy of our framework on various case studies comprising both linear and non-linear switched stochastic systems.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101554"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient strategy synthesis for switched stochastic systems with distributional uncertainty\",\"authors\":\"Ibon Gracia ,&nbsp;Dimitris Boskos ,&nbsp;Morteza Lahijanian ,&nbsp;Luca Laurenti ,&nbsp;Manuel Mazo Jr.\",\"doi\":\"10.1016/j.nahs.2024.101554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are <span><math><mrow><mi>ɛ</mi><mo>−</mo></mrow></math></span>close, in the Wasserstein distance sense, to a nominal one. We propose algorithms for the efficient synthesis of distributionally robust control strategies that maximize the satisfaction probability of reach-avoid specifications with either a given or an arbitrary (not specified) time horizon, i.e., unbounded-time reachability. The framework consists of two main steps: finite abstraction and control synthesis. First, we construct a finite abstraction of the switched stochastic system as a <em>robust Markov decision process</em> (robust MDP) that encompasses both the stochasticity of the system and the uncertainty in the noise distribution. Then, we synthesize a strategy that is robust to the distributional uncertainty on the resulting robust MDP. We employ techniques from optimal transport and stochastic programming to reduce the strategy synthesis problem to a set of linear programs, and propose a tailored and efficient algorithm to solve them. The resulting strategies are correctly refined into switching strategies for the original stochastic system. We illustrate the efficacy of our framework on various case studies comprising both linear and non-linear switched stochastic systems.</div></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"55 \",\"pages\":\"Article 101554\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X24000918\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000918","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们为具有不确定分布的离散时间切换随机系统的控制引入了一个框架。特别是,我们考虑了具有加性噪声的随机动力学,其分布位于一个模糊集合中,从瓦瑟斯坦距离意义上讲,该集合中的分布与标称分布ɛ接近。我们提出了高效合成分布稳健控制策略的算法,这些策略能在给定或任意(未指定)时间跨度(即无时间限制可达性)内最大化可达-避免规格的满足概率。该框架包括两个主要步骤:有限抽象和控制合成。首先,我们将开关随机系统有限抽象为鲁棒马尔可夫决策过程(鲁棒 MDP),其中包含系统的随机性和噪声分布的不确定性。然后,我们综合出一种策略,该策略对由此产生的鲁棒马尔可夫决策过程的分布不确定性具有鲁棒性。我们采用最优传输和随机编程的技术,将策略综合问题简化为一组线性程序,并提出了一种量身定制的高效算法来解决它们。由此产生的策略被正确地提炼为原始随机系统的切换策略。我们通过线性和非线性切换随机系统的各种案例研究来说明我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient strategy synthesis for switched stochastic systems with distributional uncertainty
We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are ɛclose, in the Wasserstein distance sense, to a nominal one. We propose algorithms for the efficient synthesis of distributionally robust control strategies that maximize the satisfaction probability of reach-avoid specifications with either a given or an arbitrary (not specified) time horizon, i.e., unbounded-time reachability. The framework consists of two main steps: finite abstraction and control synthesis. First, we construct a finite abstraction of the switched stochastic system as a robust Markov decision process (robust MDP) that encompasses both the stochasticity of the system and the uncertainty in the noise distribution. Then, we synthesize a strategy that is robust to the distributional uncertainty on the resulting robust MDP. We employ techniques from optimal transport and stochastic programming to reduce the strategy synthesis problem to a set of linear programs, and propose a tailored and efficient algorithm to solve them. The resulting strategies are correctly refined into switching strategies for the original stochastic system. We illustrate the efficacy of our framework on various case studies comprising both linear and non-linear switched stochastic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信