{"title":"微藻合成的生物银纳米粒子:生态友好型伤口愈合疗法综述","authors":"Ming-Li Teoh , Li-Lin Lein , Hazel Jing-Yi Leong , Peter Convey","doi":"10.1016/j.algal.2024.103782","DOIUrl":null,"url":null,"abstract":"<div><div>Wounds are generally caused by an injury to the skin such as a cut or a puncture. They can be considered in two groups, acute and chronic wounds. Poor wound healing can lead to multiple complications including chronic pain, irritation, unpleasant odours and infections. It is important, therefore, to assist wound healing using suitable treatments as rapidly as possible in order to reduce these complications and improve positive outcomes. Some currently available therapies used in wound care, such as gauzes, steroidal drugs, hyperbaric oxygen therapy and bioengineered cell constructions can lead to negative side effects, limiting their utilization in wound care. With recent advances, nanotechnology has been integrated into wound healing agents, providing an alternative therapeutic approach for the treatment of skin injuries. Amongst the available metal-containing nanoparticles, silver nanoparticles (AgNPs) currently have the greatest potential to be used in wound healing applications due to their strong antimicrobial properties. However, conventional methods of nanoparticle synthesis themselves raise health and environmental concerns due to their use of toxic chemicals and production of harmful waste products.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103782"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenic silver nanoparticles synthesized by microalgae: A comprehensive review of eco-friendly wound healing therapies\",\"authors\":\"Ming-Li Teoh , Li-Lin Lein , Hazel Jing-Yi Leong , Peter Convey\",\"doi\":\"10.1016/j.algal.2024.103782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wounds are generally caused by an injury to the skin such as a cut or a puncture. They can be considered in two groups, acute and chronic wounds. Poor wound healing can lead to multiple complications including chronic pain, irritation, unpleasant odours and infections. It is important, therefore, to assist wound healing using suitable treatments as rapidly as possible in order to reduce these complications and improve positive outcomes. Some currently available therapies used in wound care, such as gauzes, steroidal drugs, hyperbaric oxygen therapy and bioengineered cell constructions can lead to negative side effects, limiting their utilization in wound care. With recent advances, nanotechnology has been integrated into wound healing agents, providing an alternative therapeutic approach for the treatment of skin injuries. Amongst the available metal-containing nanoparticles, silver nanoparticles (AgNPs) currently have the greatest potential to be used in wound healing applications due to their strong antimicrobial properties. However, conventional methods of nanoparticle synthesis themselves raise health and environmental concerns due to their use of toxic chemicals and production of harmful waste products.</div></div>\",\"PeriodicalId\":7855,\"journal\":{\"name\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"volume\":\"84 \",\"pages\":\"Article 103782\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211926424003941\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003941","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biogenic silver nanoparticles synthesized by microalgae: A comprehensive review of eco-friendly wound healing therapies
Wounds are generally caused by an injury to the skin such as a cut or a puncture. They can be considered in two groups, acute and chronic wounds. Poor wound healing can lead to multiple complications including chronic pain, irritation, unpleasant odours and infections. It is important, therefore, to assist wound healing using suitable treatments as rapidly as possible in order to reduce these complications and improve positive outcomes. Some currently available therapies used in wound care, such as gauzes, steroidal drugs, hyperbaric oxygen therapy and bioengineered cell constructions can lead to negative side effects, limiting their utilization in wound care. With recent advances, nanotechnology has been integrated into wound healing agents, providing an alternative therapeutic approach for the treatment of skin injuries. Amongst the available metal-containing nanoparticles, silver nanoparticles (AgNPs) currently have the greatest potential to be used in wound healing applications due to their strong antimicrobial properties. However, conventional methods of nanoparticle synthesis themselves raise health and environmental concerns due to their use of toxic chemicals and production of harmful waste products.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment