电催化氢气进化以及原位观测不同网目数不锈钢网上氢气微气泡的进化情况

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Shujuan Liu , Ruize Gu , Xiaomeng Diao , Dandan Liang , Weihua He
{"title":"电催化氢气进化以及原位观测不同网目数不锈钢网上氢气微气泡的进化情况","authors":"Shujuan Liu ,&nbsp;Ruize Gu ,&nbsp;Xiaomeng Diao ,&nbsp;Dandan Liang ,&nbsp;Weihua He","doi":"10.1016/j.ijhydene.2024.11.080","DOIUrl":null,"url":null,"abstract":"<div><div>Stainless steel mesh (SSM) is a cost-effective, readily available catalyst and conductive substrate for large-scale hydrogen production in microbial electrolysis cells (MEC). This study reveals that variations in wire diameter and aperture size of SSM affect both the electroactive area for hydrogen evolution reaction (HER) and the formation and diffusion of hydrogen micro-nano bubbles, impacting MEC performance. <em>In-situ</em> hydrogen microbubble observation shows that 60-mesh SSM provides optimal hydrogen evolution due to its large electrochemical active area and many nucleation sites, minimizing the “bubble shielding effect”. The SSM-60 MEC achieves the highest hydrogen recovery (75 ± 5.1%) and energy recovery efficiency (85 ± 6.2%). This study combines electroactivity testing with microscopic <em>in-situ</em> reaction observation to provide a novel strategy for understanding efficient hydrogen evolution catalysts.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 545-553"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic hydrogen evolution and in-situ observation of hydrogen microbubbles evolution on stainless steel meshes with various mesh numbers\",\"authors\":\"Shujuan Liu ,&nbsp;Ruize Gu ,&nbsp;Xiaomeng Diao ,&nbsp;Dandan Liang ,&nbsp;Weihua He\",\"doi\":\"10.1016/j.ijhydene.2024.11.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stainless steel mesh (SSM) is a cost-effective, readily available catalyst and conductive substrate for large-scale hydrogen production in microbial electrolysis cells (MEC). This study reveals that variations in wire diameter and aperture size of SSM affect both the electroactive area for hydrogen evolution reaction (HER) and the formation and diffusion of hydrogen micro-nano bubbles, impacting MEC performance. <em>In-situ</em> hydrogen microbubble observation shows that 60-mesh SSM provides optimal hydrogen evolution due to its large electrochemical active area and many nucleation sites, minimizing the “bubble shielding effect”. The SSM-60 MEC achieves the highest hydrogen recovery (75 ± 5.1%) and energy recovery efficiency (85 ± 6.2%). This study combines electroactivity testing with microscopic <em>in-situ</em> reaction observation to provide a novel strategy for understanding efficient hydrogen evolution catalysts.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 545-553\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924047542\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924047542","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

不锈钢网(SSM)是微生物电解池(MEC)中用于大规模制氢的一种具有成本效益、易于获得的催化剂和导电基质。本研究揭示了 SSM 的线径和孔径大小的变化会影响氢进化反应(HER)的电活性面积以及氢微纳气泡的形成和扩散,从而影响 MEC 的性能。原位氢气微气泡观测表明,60 目 SSM 具有较大的电化学活性面积和较多的成核点,最大程度地减少了 "气泡屏蔽效应",因此能提供最佳的氢气进化效果。SSM-60 MEC 实现了最高的氢回收率(75 ± 5.1%)和能量回收效率(85 ± 6.2%)。这项研究将电活性测试与微观原位反应观察相结合,为了解高效氢进化催化剂提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrocatalytic hydrogen evolution and in-situ observation of hydrogen microbubbles evolution on stainless steel meshes with various mesh numbers

Electrocatalytic hydrogen evolution and in-situ observation of hydrogen microbubbles evolution on stainless steel meshes with various mesh numbers
Stainless steel mesh (SSM) is a cost-effective, readily available catalyst and conductive substrate for large-scale hydrogen production in microbial electrolysis cells (MEC). This study reveals that variations in wire diameter and aperture size of SSM affect both the electroactive area for hydrogen evolution reaction (HER) and the formation and diffusion of hydrogen micro-nano bubbles, impacting MEC performance. In-situ hydrogen microbubble observation shows that 60-mesh SSM provides optimal hydrogen evolution due to its large electrochemical active area and many nucleation sites, minimizing the “bubble shielding effect”. The SSM-60 MEC achieves the highest hydrogen recovery (75 ± 5.1%) and energy recovery efficiency (85 ± 6.2%). This study combines electroactivity testing with microscopic in-situ reaction observation to provide a novel strategy for understanding efficient hydrogen evolution catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信