Alexander G. Gavriel , Flavien Leroux , Ann M. Chippindale , Mark R. Sambrook , Wayne Hayes , Andrew T. Russell
{"title":"由活性亲电烷基化剂引发的树枝状自褪色分子的合成:评估此类制剂的比色法披露","authors":"Alexander G. Gavriel , Flavien Leroux , Ann M. Chippindale , Mark R. Sambrook , Wayne Hayes , Andrew T. Russell","doi":"10.1016/j.tet.2024.134377","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient chemoselective self-immolative molecules for use as sensors necessitates optimization of the degradation characteristics of the self-immolative unit to permit effective signal generation (e.g. colour changes) in relation to the triggering event. One approach is to utilise degradable dendritic structures to allow multiple copies of signalling molecules to be released in return for a single triggering event. To this end, degradable isomeric dendrons featuring aniline-core units for the detection of reactive electrophilic species have been prepared and their reactions studied. A route employing protected phosphorous-borane adducts was key to their synthesis. Following deprotection of these adducts, to activate the self-immolative dendron, alkylation by an electrophilic species and subsequent elimination events, under basic conditions as employed for related molecules incapable of generating an amplified response, were investigated. These studies revealed, in contrast to the findings with other structurally-related self-immolative dendritic molecules, that the degradation profiles of these dendrons do not afford amplified responses in relation to the number of triggering events. In the light of the expenditure of resources required to generate well-defined dendritic materials, this study provides a cautionary perspective against the assumption that such branched molecules will always afford an amplified signal.</div></div>","PeriodicalId":437,"journal":{"name":"Tetrahedron","volume":"169 ","pages":"Article 134377"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of dendritic self-immolative molecules triggered by reactive electrophilic alkylating agents: Assessment for colorimetric disclosure of such agents\",\"authors\":\"Alexander G. Gavriel , Flavien Leroux , Ann M. Chippindale , Mark R. Sambrook , Wayne Hayes , Andrew T. Russell\",\"doi\":\"10.1016/j.tet.2024.134377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of efficient chemoselective self-immolative molecules for use as sensors necessitates optimization of the degradation characteristics of the self-immolative unit to permit effective signal generation (e.g. colour changes) in relation to the triggering event. One approach is to utilise degradable dendritic structures to allow multiple copies of signalling molecules to be released in return for a single triggering event. To this end, degradable isomeric dendrons featuring aniline-core units for the detection of reactive electrophilic species have been prepared and their reactions studied. A route employing protected phosphorous-borane adducts was key to their synthesis. Following deprotection of these adducts, to activate the self-immolative dendron, alkylation by an electrophilic species and subsequent elimination events, under basic conditions as employed for related molecules incapable of generating an amplified response, were investigated. These studies revealed, in contrast to the findings with other structurally-related self-immolative dendritic molecules, that the degradation profiles of these dendrons do not afford amplified responses in relation to the number of triggering events. In the light of the expenditure of resources required to generate well-defined dendritic materials, this study provides a cautionary perspective against the assumption that such branched molecules will always afford an amplified signal.</div></div>\",\"PeriodicalId\":437,\"journal\":{\"name\":\"Tetrahedron\",\"volume\":\"169 \",\"pages\":\"Article 134377\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040402024005581\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040402024005581","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis of dendritic self-immolative molecules triggered by reactive electrophilic alkylating agents: Assessment for colorimetric disclosure of such agents
The development of efficient chemoselective self-immolative molecules for use as sensors necessitates optimization of the degradation characteristics of the self-immolative unit to permit effective signal generation (e.g. colour changes) in relation to the triggering event. One approach is to utilise degradable dendritic structures to allow multiple copies of signalling molecules to be released in return for a single triggering event. To this end, degradable isomeric dendrons featuring aniline-core units for the detection of reactive electrophilic species have been prepared and their reactions studied. A route employing protected phosphorous-borane adducts was key to their synthesis. Following deprotection of these adducts, to activate the self-immolative dendron, alkylation by an electrophilic species and subsequent elimination events, under basic conditions as employed for related molecules incapable of generating an amplified response, were investigated. These studies revealed, in contrast to the findings with other structurally-related self-immolative dendritic molecules, that the degradation profiles of these dendrons do not afford amplified responses in relation to the number of triggering events. In the light of the expenditure of resources required to generate well-defined dendritic materials, this study provides a cautionary perspective against the assumption that such branched molecules will always afford an amplified signal.
期刊介绍:
Tetrahedron publishes full accounts of research having outstanding significance in the broad field of organic chemistry and its related disciplines, such as organic materials and bio-organic chemistry.
Regular papers in Tetrahedron are expected to represent detailed accounts of an original study having substantially greater scope and details than that found in a communication, as published in Tetrahedron Letters.
Tetrahedron also publishes thematic collections of papers as special issues and ''Reports'', commissioned in-depth reviews providing a comprehensive overview of a research area.