Jun Li , Zhengfu Ning , Jianhao Wang , Gang Wang , Qiming Huang , Kangbo Zhao
{"title":"浮油对页岩甲烷吸附/解吸/扩散及孔隙结构影响的实验研究","authors":"Jun Li , Zhengfu Ning , Jianhao Wang , Gang Wang , Qiming Huang , Kangbo Zhao","doi":"10.1016/j.ijhydene.2024.11.172","DOIUrl":null,"url":null,"abstract":"<div><div>After the slickwater fracturing method is adopted, a portion of the slickwater remains in the reservoir, impacting shale gas production. To address this limitation, shale samples from the Longmaxi Formation were soaked and washed with varying concentration of polyacrylamide in slickwater under different pressures to simulate the flowback process following slickwater fracturing. The effects of slickwater on methane adsorption, desorption, and diffusion in shale were examined through isothermal adsorption experiments, while the evolution of shale pore structure was assessed using low-temperature nitrogen adsorption experiments. Results indicate that slickwater adheres to the surfaces of microcracks and macropores, creating new small pores and increasing the specific surface area and pore volume of macropores with sizes exceeding 5 nm. Slickwater may also block pore throats, causing some open or semi-open pores to become closed, thereby reducing the accessible specific surface area and pore volume and hindering the adsorption, desorption, and diffusion of methane. At a pressure of 9 MPa, treatment with 0.7% slickwater reduces the Langmuir volume to 40% of that of the original shale, while the diffusion coefficient decreases to 47% of its original value. Furthermore, as soaking pressure or concentration increases, the hysteresis of methane desorption in shale initially decreases before subsequently increasing. The findings of this research provide theoretical guidance for the further enhancement of shale gas development.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 871-882"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the effect of slickwater on methane adsorption/desorption/diffusion and pore structure of shale\",\"authors\":\"Jun Li , Zhengfu Ning , Jianhao Wang , Gang Wang , Qiming Huang , Kangbo Zhao\",\"doi\":\"10.1016/j.ijhydene.2024.11.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>After the slickwater fracturing method is adopted, a portion of the slickwater remains in the reservoir, impacting shale gas production. To address this limitation, shale samples from the Longmaxi Formation were soaked and washed with varying concentration of polyacrylamide in slickwater under different pressures to simulate the flowback process following slickwater fracturing. The effects of slickwater on methane adsorption, desorption, and diffusion in shale were examined through isothermal adsorption experiments, while the evolution of shale pore structure was assessed using low-temperature nitrogen adsorption experiments. Results indicate that slickwater adheres to the surfaces of microcracks and macropores, creating new small pores and increasing the specific surface area and pore volume of macropores with sizes exceeding 5 nm. Slickwater may also block pore throats, causing some open or semi-open pores to become closed, thereby reducing the accessible specific surface area and pore volume and hindering the adsorption, desorption, and diffusion of methane. At a pressure of 9 MPa, treatment with 0.7% slickwater reduces the Langmuir volume to 40% of that of the original shale, while the diffusion coefficient decreases to 47% of its original value. Furthermore, as soaking pressure or concentration increases, the hysteresis of methane desorption in shale initially decreases before subsequently increasing. The findings of this research provide theoretical guidance for the further enhancement of shale gas development.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 871-882\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924048547\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Experimental investigation on the effect of slickwater on methane adsorption/desorption/diffusion and pore structure of shale
After the slickwater fracturing method is adopted, a portion of the slickwater remains in the reservoir, impacting shale gas production. To address this limitation, shale samples from the Longmaxi Formation were soaked and washed with varying concentration of polyacrylamide in slickwater under different pressures to simulate the flowback process following slickwater fracturing. The effects of slickwater on methane adsorption, desorption, and diffusion in shale were examined through isothermal adsorption experiments, while the evolution of shale pore structure was assessed using low-temperature nitrogen adsorption experiments. Results indicate that slickwater adheres to the surfaces of microcracks and macropores, creating new small pores and increasing the specific surface area and pore volume of macropores with sizes exceeding 5 nm. Slickwater may also block pore throats, causing some open or semi-open pores to become closed, thereby reducing the accessible specific surface area and pore volume and hindering the adsorption, desorption, and diffusion of methane. At a pressure of 9 MPa, treatment with 0.7% slickwater reduces the Langmuir volume to 40% of that of the original shale, while the diffusion coefficient decreases to 47% of its original value. Furthermore, as soaking pressure or concentration increases, the hysteresis of methane desorption in shale initially decreases before subsequently increasing. The findings of this research provide theoretical guidance for the further enhancement of shale gas development.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.