{"title":"V2X 应用服务器和以车辆为中心的 V2V 信息验证承诺分配","authors":"Mujahid Muhammad , Ghazanfar Ali Safdar","doi":"10.1016/j.adhoc.2024.103701","DOIUrl":null,"url":null,"abstract":"<div><div>Safety applications, such as intersection collision warnings and emergency brake warnings, enhance road safety and traffic efficiency through periodic broadcast messages by vehicles and roadside infrastructure. While the Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used security approach, its performance limitations make it unsuitable for time-critical safety applications. As such, a symmetric cryptography-based technique called Timed Efficient Stream Loss-tolerant Authentication (TESLA) offers a viable alternative. However, applying standard TESLA in the context of vehicle-to-vehicle (V2V) communications has its own challenges. One challenge is the difficulty of distributing authentication information called commitments in the highly dynamic V2V environment. In this paper, we propose two novel solutions to this problem, namely, V2X Application Server (VAS)-centric and vehicle-centric. The former is an application-level solution that involves selective unicasting of commitments to vehicles by a central server, the VAS, and the latter is a reactive scheme that involves the periodic broadcast of commitments by the vehicles themselves. Extensive simulations are conducted using representatives of the real V2V environment to evaluate the performance of these approaches under different traffic situations; as well as performance comparison with a state-of-the-art distribution solution. The simulation results indicate that the VAS-centric solution is preferable for use in a TESLA-like V2V security scheme. It demonstrates desirable features, including timely delivery of commitments and high distribution efficiency, with over 95 % of commitments sent by the VAS are associated with relevant safety messages when compared with the vehicle-centric and state-of-the-art solutions. Formal security analysis, conducted using the Random Oracle Model (ROM), proves the correctness of our proposed distribution schemes. Additionally, an informal security analysis shows the resilience of the proposed schemes against various attacks, including impersonation, replay, and bogus commitment messages.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"167 ","pages":"Article 103701"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"V2X application server and vehicle centric distribution of commitments for V2V message authentication\",\"authors\":\"Mujahid Muhammad , Ghazanfar Ali Safdar\",\"doi\":\"10.1016/j.adhoc.2024.103701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Safety applications, such as intersection collision warnings and emergency brake warnings, enhance road safety and traffic efficiency through periodic broadcast messages by vehicles and roadside infrastructure. While the Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used security approach, its performance limitations make it unsuitable for time-critical safety applications. As such, a symmetric cryptography-based technique called Timed Efficient Stream Loss-tolerant Authentication (TESLA) offers a viable alternative. However, applying standard TESLA in the context of vehicle-to-vehicle (V2V) communications has its own challenges. One challenge is the difficulty of distributing authentication information called commitments in the highly dynamic V2V environment. In this paper, we propose two novel solutions to this problem, namely, V2X Application Server (VAS)-centric and vehicle-centric. The former is an application-level solution that involves selective unicasting of commitments to vehicles by a central server, the VAS, and the latter is a reactive scheme that involves the periodic broadcast of commitments by the vehicles themselves. Extensive simulations are conducted using representatives of the real V2V environment to evaluate the performance of these approaches under different traffic situations; as well as performance comparison with a state-of-the-art distribution solution. The simulation results indicate that the VAS-centric solution is preferable for use in a TESLA-like V2V security scheme. It demonstrates desirable features, including timely delivery of commitments and high distribution efficiency, with over 95 % of commitments sent by the VAS are associated with relevant safety messages when compared with the vehicle-centric and state-of-the-art solutions. Formal security analysis, conducted using the Random Oracle Model (ROM), proves the correctness of our proposed distribution schemes. Additionally, an informal security analysis shows the resilience of the proposed schemes against various attacks, including impersonation, replay, and bogus commitment messages.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"167 \",\"pages\":\"Article 103701\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524003123\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003123","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
交叉路口碰撞警告和紧急制动警告等安全应用通过车辆和路边基础设施的定期广播信息来提高道路安全和交通效率。虽然椭圆曲线数字签名算法(ECDSA)是一种广泛使用的安全方法,但其性能限制使其不适合时间紧迫的安全应用。因此,一种名为 "定时高效流损容限验证"(TESLA)的对称加密技术提供了一种可行的替代方案。然而,在车对车 (V2V) 通信中应用标准 TESLA 有其自身的挑战。挑战之一是在高度动态的 V2V 环境中难以分发称为承诺的验证信息。本文针对这一问题提出了两种新颖的解决方案,即以 V2X 应用服务器 (VAS) 为中心和以车辆为中心。前者是一种应用级解决方案,包括由中央服务器(VAS)有选择地向车辆单播承诺;后者是一种反应式方案,包括由车辆本身定期广播承诺。我们使用真实 V2V 环境的代表进行了大量模拟,以评估这些方法在不同交通状况下的性能,并与最先进的分配解决方案进行性能比较。模拟结果表明,以 VAS 为中心的解决方案更适合用于类似 TESLA 的 V2V 安全方案。与以车辆为中心的解决方案和最先进的解决方案相比,VAS 发送的承诺中有 95% 以上与相关的安全信息有关,因此它具有及时交付承诺和高分配效率等理想特性。使用随机甲骨文模型(ROM)进行的正式安全分析证明了我们提出的分配方案的正确性。此外,非正式的安全分析表明,所提出的方案能够抵御各种攻击,包括冒名顶替、重放和伪造承诺信息。
V2X application server and vehicle centric distribution of commitments for V2V message authentication
Safety applications, such as intersection collision warnings and emergency brake warnings, enhance road safety and traffic efficiency through periodic broadcast messages by vehicles and roadside infrastructure. While the Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used security approach, its performance limitations make it unsuitable for time-critical safety applications. As such, a symmetric cryptography-based technique called Timed Efficient Stream Loss-tolerant Authentication (TESLA) offers a viable alternative. However, applying standard TESLA in the context of vehicle-to-vehicle (V2V) communications has its own challenges. One challenge is the difficulty of distributing authentication information called commitments in the highly dynamic V2V environment. In this paper, we propose two novel solutions to this problem, namely, V2X Application Server (VAS)-centric and vehicle-centric. The former is an application-level solution that involves selective unicasting of commitments to vehicles by a central server, the VAS, and the latter is a reactive scheme that involves the periodic broadcast of commitments by the vehicles themselves. Extensive simulations are conducted using representatives of the real V2V environment to evaluate the performance of these approaches under different traffic situations; as well as performance comparison with a state-of-the-art distribution solution. The simulation results indicate that the VAS-centric solution is preferable for use in a TESLA-like V2V security scheme. It demonstrates desirable features, including timely delivery of commitments and high distribution efficiency, with over 95 % of commitments sent by the VAS are associated with relevant safety messages when compared with the vehicle-centric and state-of-the-art solutions. Formal security analysis, conducted using the Random Oracle Model (ROM), proves the correctness of our proposed distribution schemes. Additionally, an informal security analysis shows the resilience of the proposed schemes against various attacks, including impersonation, replay, and bogus commitment messages.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.