新型生物涂层支撑物上的微藻-细菌协同培养:浸没式和渗透式生物膜培养系统的生长性能评估及成本效益评估

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
C.Y. Tong , Chai Ying Kee , Kohsuke Honda , C.J.C. Derek
{"title":"新型生物涂层支撑物上的微藻-细菌协同培养:浸没式和渗透式生物膜培养系统的生长性能评估及成本效益评估","authors":"C.Y. Tong ,&nbsp;Chai Ying Kee ,&nbsp;Kohsuke Honda ,&nbsp;C.J.C. Derek","doi":"10.1016/j.algal.2024.103792","DOIUrl":null,"url":null,"abstract":"<div><div>In microalgae mass production, co-cultivation with bacteria and biofilm immobilization hold promise, yet challenges persist in biofilm-based cultivation due to weak cohesion under stress. Hence, a novel bio-coating derived from spent medium and cells (extra-/intra-cellular organic matter from <em>Cylindrotheca fusiformis</em> and <em>Escherichia coli</em>) was applied to microporous membrane in submerged and permeated biofilm systems. Results showed a minimum 25 % improvement in biomass productivity (up to 45 g m<sup>−2</sup>) on bio-coated membranes in permeated system. Mucopolysaccharides in bio-coating facilitated biofilm development and encouraged a 10-fold higher AOM yield (defense mechanism against shearing force) in submerged systems, but biomass productivity was 10 times lower than permeated system. In permeated system, cells on IOM-coated membranes exhibited the highest biomass growth and lipid yield, potentially addressing the biomass-lipid trade-off. Permeated system with low operating cost around 69 $ kg<sup>−1</sup> was a viable cultivation approach, presenting an opportunity to optimize microalgae production facilities.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103792"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microalgal-bacterial co-cultivation on novel bio-coated supports: Evaluation of growth performance in submerged and permeated biofilm cultivation system with cost-benefit assessment\",\"authors\":\"C.Y. Tong ,&nbsp;Chai Ying Kee ,&nbsp;Kohsuke Honda ,&nbsp;C.J.C. Derek\",\"doi\":\"10.1016/j.algal.2024.103792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In microalgae mass production, co-cultivation with bacteria and biofilm immobilization hold promise, yet challenges persist in biofilm-based cultivation due to weak cohesion under stress. Hence, a novel bio-coating derived from spent medium and cells (extra-/intra-cellular organic matter from <em>Cylindrotheca fusiformis</em> and <em>Escherichia coli</em>) was applied to microporous membrane in submerged and permeated biofilm systems. Results showed a minimum 25 % improvement in biomass productivity (up to 45 g m<sup>−2</sup>) on bio-coated membranes in permeated system. Mucopolysaccharides in bio-coating facilitated biofilm development and encouraged a 10-fold higher AOM yield (defense mechanism against shearing force) in submerged systems, but biomass productivity was 10 times lower than permeated system. In permeated system, cells on IOM-coated membranes exhibited the highest biomass growth and lipid yield, potentially addressing the biomass-lipid trade-off. Permeated system with low operating cost around 69 $ kg<sup>−1</sup> was a viable cultivation approach, presenting an opportunity to optimize microalgae production facilities.</div></div>\",\"PeriodicalId\":7855,\"journal\":{\"name\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"volume\":\"84 \",\"pages\":\"Article 103792\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211926424004041\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在微藻批量生产中,与细菌共培养和生物膜固定化是大有可为的,但由于生物膜在压力下的内聚力较弱,基于生物膜的培养仍面临挑战。因此,一种由废培养基和细胞(来自 Cylindrotheca fusiformis 和 Escherichia coli 的胞外/胞内有机物)制成的新型生物涂层被应用于浸没式和渗透式生物膜系统中的微孔膜。结果表明,在渗透系统中,生物涂层膜的生物量生产率至少提高了 25%(高达 45 g m-2)。在浸没式系统中,生物涂层中的粘多糖促进了生物膜的发展,并使 AOM 产量(针对剪切力的防御机制)提高了 10 倍,但生物量生产率比渗透式系统低 10 倍。在渗透式系统中,涂有 IOM 的膜上的细胞表现出最高的生物量增长和脂质产量,可能解决了生物量-脂质权衡问题。渗透式系统的运行成本低,约为 69 美元/公斤-1,是一种可行的培养方法,为优化微藻生产设施提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microalgal-bacterial co-cultivation on novel bio-coated supports: Evaluation of growth performance in submerged and permeated biofilm cultivation system with cost-benefit assessment

Microalgal-bacterial co-cultivation on novel bio-coated supports: Evaluation of growth performance in submerged and permeated biofilm cultivation system with cost-benefit assessment
In microalgae mass production, co-cultivation with bacteria and biofilm immobilization hold promise, yet challenges persist in biofilm-based cultivation due to weak cohesion under stress. Hence, a novel bio-coating derived from spent medium and cells (extra-/intra-cellular organic matter from Cylindrotheca fusiformis and Escherichia coli) was applied to microporous membrane in submerged and permeated biofilm systems. Results showed a minimum 25 % improvement in biomass productivity (up to 45 g m−2) on bio-coated membranes in permeated system. Mucopolysaccharides in bio-coating facilitated biofilm development and encouraged a 10-fold higher AOM yield (defense mechanism against shearing force) in submerged systems, but biomass productivity was 10 times lower than permeated system. In permeated system, cells on IOM-coated membranes exhibited the highest biomass growth and lipid yield, potentially addressing the biomass-lipid trade-off. Permeated system with low operating cost around 69 $ kg−1 was a viable cultivation approach, presenting an opportunity to optimize microalgae production facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信