梯级开发的高坝和大型水库对稳定水同位素的影响

IF 3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Yichen Liu , Yuchuan Meng , Guodong Liu , Shu Xie
{"title":"梯级开发的高坝和大型水库对稳定水同位素的影响","authors":"Yichen Liu ,&nbsp;Yuchuan Meng ,&nbsp;Guodong Liu ,&nbsp;Shu Xie","doi":"10.1016/j.pce.2024.103807","DOIUrl":null,"url":null,"abstract":"<div><div>Cascade development alters the natural continuity of rivers in the watershed, thereby altering hydrologic characteristics. Based on the water sampling conducted in September 2020 and June 2021 in the Dadu River basin, Southwestern China, this study reports the influence of cascade development on the stable isotope compositional characteristics of the Dadu River basin and identifies the primary influencing environmental factors. The mean values of δD and δ<sup>18</sup>O in the waters of the Dadu River basin are −108.41‰, −15.34‰ and −95.88‰, −13.91‰ in September and June, respectively, and the isotopes are more enriched in June. From upstream to downstream, the stable isotopes exhibit an enrichment trend due to evaporation and tributary inflow. Overall, gradual increase in stream water temperature along the Dadu River, and the stable isotopes present a positive correlation with the water temperature. The water body of Dadu River show elevation, latitude, and longitude effect, but changes in latitude and longitude have a smaller effect on stable isotopes. To determine the weight of influences on stable isotopes in reservoir water, we used principal component analysis and found that water temperature was the main influence, while the retention time of the water body in the reservoir area has the smallest influence among the five influencing factors as 12.29%. The study reveals that the cascade development of high dams and large reservoirs affects the hydrological situation of the basin, which in turn causes changes in the ecological environment.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"137 ","pages":"Article 103807"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of high dams and large reservoirs with cascade development on stable water isotopes\",\"authors\":\"Yichen Liu ,&nbsp;Yuchuan Meng ,&nbsp;Guodong Liu ,&nbsp;Shu Xie\",\"doi\":\"10.1016/j.pce.2024.103807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cascade development alters the natural continuity of rivers in the watershed, thereby altering hydrologic characteristics. Based on the water sampling conducted in September 2020 and June 2021 in the Dadu River basin, Southwestern China, this study reports the influence of cascade development on the stable isotope compositional characteristics of the Dadu River basin and identifies the primary influencing environmental factors. The mean values of δD and δ<sup>18</sup>O in the waters of the Dadu River basin are −108.41‰, −15.34‰ and −95.88‰, −13.91‰ in September and June, respectively, and the isotopes are more enriched in June. From upstream to downstream, the stable isotopes exhibit an enrichment trend due to evaporation and tributary inflow. Overall, gradual increase in stream water temperature along the Dadu River, and the stable isotopes present a positive correlation with the water temperature. The water body of Dadu River show elevation, latitude, and longitude effect, but changes in latitude and longitude have a smaller effect on stable isotopes. To determine the weight of influences on stable isotopes in reservoir water, we used principal component analysis and found that water temperature was the main influence, while the retention time of the water body in the reservoir area has the smallest influence among the five influencing factors as 12.29%. The study reveals that the cascade development of high dams and large reservoirs affects the hydrological situation of the basin, which in turn causes changes in the ecological environment.</div></div>\",\"PeriodicalId\":54616,\"journal\":{\"name\":\"Physics and Chemistry of the Earth\",\"volume\":\"137 \",\"pages\":\"Article 103807\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474706524002651\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524002651","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

梯级开发改变了流域内河流的自然连续性,从而改变了水文特征。本研究基于 2020 年 9 月和 2021 年 6 月在中国西南部大渡河流域进行的水样采集,报告了梯级开发对大渡河流域稳定同位素组成特征的影响,并确定了主要的影响环境因素。大渡河流域水体中δD和δ18O的平均值在9月和6月分别为-108.41‰、-15.34‰和-95.88‰、-13.91‰,且6月的同位素富集程度较高。从上游到下游,由于蒸发和支流流入的影响,稳定同位素呈富集趋势。总体而言,大渡河沿岸水温逐渐升高,稳定同位素与水温呈正相关。大渡河水体呈现出海拔、纬度和经度效应,但纬度和经度的变化对稳定同位素的影响较小。为确定水库水体中稳定同位素的影响因素权重,我们采用主成分分析法,发现水温是主要影响因素,而库区水体的滞留时间在五个影响因素中影响最小,仅占 12.29%。研究表明,高坝大库的梯级开发影响了流域的水文状况,进而引起生态环境的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of high dams and large reservoirs with cascade development on stable water isotopes

Effects of high dams and large reservoirs with cascade development on stable water isotopes
Cascade development alters the natural continuity of rivers in the watershed, thereby altering hydrologic characteristics. Based on the water sampling conducted in September 2020 and June 2021 in the Dadu River basin, Southwestern China, this study reports the influence of cascade development on the stable isotope compositional characteristics of the Dadu River basin and identifies the primary influencing environmental factors. The mean values of δD and δ18O in the waters of the Dadu River basin are −108.41‰, −15.34‰ and −95.88‰, −13.91‰ in September and June, respectively, and the isotopes are more enriched in June. From upstream to downstream, the stable isotopes exhibit an enrichment trend due to evaporation and tributary inflow. Overall, gradual increase in stream water temperature along the Dadu River, and the stable isotopes present a positive correlation with the water temperature. The water body of Dadu River show elevation, latitude, and longitude effect, but changes in latitude and longitude have a smaller effect on stable isotopes. To determine the weight of influences on stable isotopes in reservoir water, we used principal component analysis and found that water temperature was the main influence, while the retention time of the water body in the reservoir area has the smallest influence among the five influencing factors as 12.29%. The study reveals that the cascade development of high dams and large reservoirs affects the hydrological situation of the basin, which in turn causes changes in the ecological environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of the Earth
Physics and Chemistry of the Earth 地学-地球科学综合
CiteScore
5.40
自引率
2.70%
发文量
176
审稿时长
31.6 weeks
期刊介绍: Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001. Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers. The journal covers the following subject areas: -Solid Earth and Geodesy: (geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy). -Hydrology, Oceans and Atmosphere: (hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology). -Solar-Terrestrial and Planetary Science: (solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信