关于赫尔德空间中卡普托导数的 L1 离散误差的说明

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Félix del Teso , Łukasz Płociniczak
{"title":"关于赫尔德空间中卡普托导数的 L1 离散误差的说明","authors":"Félix del Teso ,&nbsp;Łukasz Płociniczak","doi":"10.1016/j.aml.2024.109364","DOIUrl":null,"url":null,"abstract":"<div><div>We establish uniform error bounds of the L1 discretization of the Caputo derivative of Hölder continuous functions. The result can be understood as: <em>error = degree of smoothness - order of the derivative.</em> We present an elementary proof and illustrate its optimality with numerical examples.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"161 ","pages":"Article 109364"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the L1 discretization error for the Caputo derivative in Hölder spaces\",\"authors\":\"Félix del Teso ,&nbsp;Łukasz Płociniczak\",\"doi\":\"10.1016/j.aml.2024.109364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish uniform error bounds of the L1 discretization of the Caputo derivative of Hölder continuous functions. The result can be understood as: <em>error = degree of smoothness - order of the derivative.</em> We present an elementary proof and illustrate its optimality with numerical examples.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"161 \",\"pages\":\"Article 109364\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003847\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003847","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了赫尔德连续函数卡普托导数 L1 离散化的均匀误差边界。其结果可理解为:误差 = 平滑度 - 导数阶数。我们给出了一个基本证明,并通过数值示例说明了其最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the L1 discretization error for the Caputo derivative in Hölder spaces
We establish uniform error bounds of the L1 discretization of the Caputo derivative of Hölder continuous functions. The result can be understood as: error = degree of smoothness - order of the derivative. We present an elementary proof and illustrate its optimality with numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信