{"title":"氩气冷常压等离子体喷射活化液的理化特性和抗菌功效--比较研究","authors":"Sarthak Das , Sarita Mohapatra , Satyananda Kar","doi":"10.1016/j.fpp.2024.100078","DOIUrl":null,"url":null,"abstract":"<div><div>Cold atmospheric pressure plasma jet activated liquids (CAPJALs) have attracted considerable scientific attention due to their peculiar antimicrobial characteristics. In the current context, there is a need to compare the bactericidal activity of CAPJALs and demonstrate the specific parameters necessary to obtain greater effectiveness. This in-vitro research examines the antimicrobial activity of liquids, such as deionized water (DI-W), drinking water (DW), tap water (TW), and normal saline (NS) activated by Ar cold atmospheric pressure plasma jet (CAPJ) against multidrug-resistant (MDR) <em>E. coli</em> and <em>S. aureus</em>. The computed <em>D-</em> value showed that CAPJALs' bacterial inactivation efficacy followed the trend – DI-W ≈ NS > DW > TW for both the isolates. To obtain greater bactericidal effectiveness, an optimum combination of liquid activation time by CAPJ and CAPJAL – bacteria interaction time was noticed. In addition, the rate at which the physicochemical parameters (pH, electrical conductivity (EC), total dissolved solids (TDS), and concentration of reactive species (H<sub>2</sub>O<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, and NO<sub>2</sub><sup>-</sup>)) changed within the liquid varied in different ways. It was observed that the identified gas-phase species (Ar I, Ar<sup>+</sup>, N<sub>2</sub>, N<sub>2</sub><sup>+</sup>, O I, OH•, OH<sup>+</sup>, NO<sup>+</sup>, O<sub>2</sub><sup>+</sup>, N<sub>2</sub>O<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, N<sub>2</sub>O<sub>2</sub><sup>-</sup>, etc.) would contribute to modification of liquid physicochemical property by generating liquid phase reactive species (NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, H<sup>+</sup>, H<sub>2</sub>O<sub>2</sub>, ONOOH, Cl<sub>2</sub>, HOCl, etc.) via reaction cascades. These reactive species in the liquid phase, together with other physicochemical characteristics, were found to play a part in the process of bacterial inactivation. This study into the underlying mechanism of CAPJ – liquid and CAPJAL – bacteria interaction would help to determine its potential use as a disinfectant in healthcare settings.</div></div><div><h3>List of microorganisms</h3><div><em>E. coli: Escherichia coli; S. aureus: Staphylococcus aureus</em>.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"12 ","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical properties and antimicrobial efficacy of argon cold atmospheric pressure plasma jet activated liquids – a comparative study\",\"authors\":\"Sarthak Das , Sarita Mohapatra , Satyananda Kar\",\"doi\":\"10.1016/j.fpp.2024.100078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cold atmospheric pressure plasma jet activated liquids (CAPJALs) have attracted considerable scientific attention due to their peculiar antimicrobial characteristics. In the current context, there is a need to compare the bactericidal activity of CAPJALs and demonstrate the specific parameters necessary to obtain greater effectiveness. This in-vitro research examines the antimicrobial activity of liquids, such as deionized water (DI-W), drinking water (DW), tap water (TW), and normal saline (NS) activated by Ar cold atmospheric pressure plasma jet (CAPJ) against multidrug-resistant (MDR) <em>E. coli</em> and <em>S. aureus</em>. The computed <em>D-</em> value showed that CAPJALs' bacterial inactivation efficacy followed the trend – DI-W ≈ NS > DW > TW for both the isolates. To obtain greater bactericidal effectiveness, an optimum combination of liquid activation time by CAPJ and CAPJAL – bacteria interaction time was noticed. In addition, the rate at which the physicochemical parameters (pH, electrical conductivity (EC), total dissolved solids (TDS), and concentration of reactive species (H<sub>2</sub>O<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, and NO<sub>2</sub><sup>-</sup>)) changed within the liquid varied in different ways. It was observed that the identified gas-phase species (Ar I, Ar<sup>+</sup>, N<sub>2</sub>, N<sub>2</sub><sup>+</sup>, O I, OH•, OH<sup>+</sup>, NO<sup>+</sup>, O<sub>2</sub><sup>+</sup>, N<sub>2</sub>O<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, N<sub>2</sub>O<sub>2</sub><sup>-</sup>, etc.) would contribute to modification of liquid physicochemical property by generating liquid phase reactive species (NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, H<sup>+</sup>, H<sub>2</sub>O<sub>2</sub>, ONOOH, Cl<sub>2</sub>, HOCl, etc.) via reaction cascades. These reactive species in the liquid phase, together with other physicochemical characteristics, were found to play a part in the process of bacterial inactivation. This study into the underlying mechanism of CAPJ – liquid and CAPJAL – bacteria interaction would help to determine its potential use as a disinfectant in healthcare settings.</div></div><div><h3>List of microorganisms</h3><div><em>E. coli: Escherichia coli; S. aureus: Staphylococcus aureus</em>.</div></div>\",\"PeriodicalId\":100558,\"journal\":{\"name\":\"Fundamental Plasma Physics\",\"volume\":\"12 \",\"pages\":\"Article 100078\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physicochemical properties and antimicrobial efficacy of argon cold atmospheric pressure plasma jet activated liquids – a comparative study
Cold atmospheric pressure plasma jet activated liquids (CAPJALs) have attracted considerable scientific attention due to their peculiar antimicrobial characteristics. In the current context, there is a need to compare the bactericidal activity of CAPJALs and demonstrate the specific parameters necessary to obtain greater effectiveness. This in-vitro research examines the antimicrobial activity of liquids, such as deionized water (DI-W), drinking water (DW), tap water (TW), and normal saline (NS) activated by Ar cold atmospheric pressure plasma jet (CAPJ) against multidrug-resistant (MDR) E. coli and S. aureus. The computed D- value showed that CAPJALs' bacterial inactivation efficacy followed the trend – DI-W ≈ NS > DW > TW for both the isolates. To obtain greater bactericidal effectiveness, an optimum combination of liquid activation time by CAPJ and CAPJAL – bacteria interaction time was noticed. In addition, the rate at which the physicochemical parameters (pH, electrical conductivity (EC), total dissolved solids (TDS), and concentration of reactive species (H2O2, NO3-, and NO2-)) changed within the liquid varied in different ways. It was observed that the identified gas-phase species (Ar I, Ar+, N2, N2+, O I, OH•, OH+, NO+, O2+, N2O3-, NO3-, N2O2-, etc.) would contribute to modification of liquid physicochemical property by generating liquid phase reactive species (NO3-, NO2-, H+, H2O2, ONOOH, Cl2, HOCl, etc.) via reaction cascades. These reactive species in the liquid phase, together with other physicochemical characteristics, were found to play a part in the process of bacterial inactivation. This study into the underlying mechanism of CAPJ – liquid and CAPJAL – bacteria interaction would help to determine its potential use as a disinfectant in healthcare settings.
List of microorganisms
E. coli: Escherichia coli; S. aureus: Staphylococcus aureus.