Peng Wang , Heng Shao , Haiyan Chen , Hongbo Zhang , Xin Nai , Shuai Zhao , Pengcheng Wang , Xiaoguo Song , Achilles Vairis , Wenya Li
{"title":"通过 Nb 泡沫诱导原位形成坚韧的 Ti4Nb 相提高 Ti2AlNb/Ti60 焊接接头的机械性能","authors":"Peng Wang , Heng Shao , Haiyan Chen , Hongbo Zhang , Xin Nai , Shuai Zhao , Pengcheng Wang , Xiaoguo Song , Achilles Vairis , Wenya Li","doi":"10.1016/j.matchar.2024.114513","DOIUrl":null,"url":null,"abstract":"<div><div>Brazing titanium alloys with TiZrCuNi filler typically leads to numerous eutectic structures and brittle intermetallic compounds, compromising the mechanical properties of joints, particularly their toughness. To mitigate this issue, this study employs Ni and Nb foams as interlayers to join Ti<sub>2</sub>AlNb and Ti60 alloy. The results show that using Ni foam as the interlayer only forms 17.8 % β-Ti phase in the brazing seam. In contrast, Nb foam as the interlayer promotes the in-situ formation of 38.5 % Ti<sub>4</sub>Nb phase within the brazing seam, effectively balancing the coefficient of thermal expansion difference and reducing residual thermal stresses. Comparative analysis reveals that the Ti<sub>4</sub>Nb phase has superior plasticity and toughness compared to the β-Ti phase, allowing for substantial strain energy storage. The interface between β-Ti phase and Zr<sub>2</sub>Cu phase exhibits significant lattice mismatch, resulting in an incoherent interface. Conversely, the Nb foam interlayer produces a semi-coherent interface between Ti<sub>4</sub>Nb and Zr<sub>2</sub>Cu phases, characterized by reduced lattice mismatch, which enhances the interfacial bonding strength of the brazed joint. The Ti<sub>2</sub>AlNb/Ti60 joints, when brazed with Nb foam under consistent conditions, achieved a shear strength of 414.6 MPa, which is approximately 18 % superior to that of joints brazed using the Ti-36.5Zr-10Ni-15Cu-0.5Co-0.5Nb amorphous filler solely. Additionally, the shear stress-strain curves of the joints with Nb foam exhibit a more pronounced yield stage compared to those with only filler. This study introduces a novel approach for improving the toughness of brazed joints in practical applications using titanium-based fillers.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114513"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of mechanical properties in Ti2AlNb/Ti60 brazed joints via Nb foam-induced in-situ formation of tough Ti4Nb phase\",\"authors\":\"Peng Wang , Heng Shao , Haiyan Chen , Hongbo Zhang , Xin Nai , Shuai Zhao , Pengcheng Wang , Xiaoguo Song , Achilles Vairis , Wenya Li\",\"doi\":\"10.1016/j.matchar.2024.114513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Brazing titanium alloys with TiZrCuNi filler typically leads to numerous eutectic structures and brittle intermetallic compounds, compromising the mechanical properties of joints, particularly their toughness. To mitigate this issue, this study employs Ni and Nb foams as interlayers to join Ti<sub>2</sub>AlNb and Ti60 alloy. The results show that using Ni foam as the interlayer only forms 17.8 % β-Ti phase in the brazing seam. In contrast, Nb foam as the interlayer promotes the in-situ formation of 38.5 % Ti<sub>4</sub>Nb phase within the brazing seam, effectively balancing the coefficient of thermal expansion difference and reducing residual thermal stresses. Comparative analysis reveals that the Ti<sub>4</sub>Nb phase has superior plasticity and toughness compared to the β-Ti phase, allowing for substantial strain energy storage. The interface between β-Ti phase and Zr<sub>2</sub>Cu phase exhibits significant lattice mismatch, resulting in an incoherent interface. Conversely, the Nb foam interlayer produces a semi-coherent interface between Ti<sub>4</sub>Nb and Zr<sub>2</sub>Cu phases, characterized by reduced lattice mismatch, which enhances the interfacial bonding strength of the brazed joint. The Ti<sub>2</sub>AlNb/Ti60 joints, when brazed with Nb foam under consistent conditions, achieved a shear strength of 414.6 MPa, which is approximately 18 % superior to that of joints brazed using the Ti-36.5Zr-10Ni-15Cu-0.5Co-0.5Nb amorphous filler solely. Additionally, the shear stress-strain curves of the joints with Nb foam exhibit a more pronounced yield stage compared to those with only filler. This study introduces a novel approach for improving the toughness of brazed joints in practical applications using titanium-based fillers.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114513\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324008945\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Enhancement of mechanical properties in Ti2AlNb/Ti60 brazed joints via Nb foam-induced in-situ formation of tough Ti4Nb phase
Brazing titanium alloys with TiZrCuNi filler typically leads to numerous eutectic structures and brittle intermetallic compounds, compromising the mechanical properties of joints, particularly their toughness. To mitigate this issue, this study employs Ni and Nb foams as interlayers to join Ti2AlNb and Ti60 alloy. The results show that using Ni foam as the interlayer only forms 17.8 % β-Ti phase in the brazing seam. In contrast, Nb foam as the interlayer promotes the in-situ formation of 38.5 % Ti4Nb phase within the brazing seam, effectively balancing the coefficient of thermal expansion difference and reducing residual thermal stresses. Comparative analysis reveals that the Ti4Nb phase has superior plasticity and toughness compared to the β-Ti phase, allowing for substantial strain energy storage. The interface between β-Ti phase and Zr2Cu phase exhibits significant lattice mismatch, resulting in an incoherent interface. Conversely, the Nb foam interlayer produces a semi-coherent interface between Ti4Nb and Zr2Cu phases, characterized by reduced lattice mismatch, which enhances the interfacial bonding strength of the brazed joint. The Ti2AlNb/Ti60 joints, when brazed with Nb foam under consistent conditions, achieved a shear strength of 414.6 MPa, which is approximately 18 % superior to that of joints brazed using the Ti-36.5Zr-10Ni-15Cu-0.5Co-0.5Nb amorphous filler solely. Additionally, the shear stress-strain curves of the joints with Nb foam exhibit a more pronounced yield stage compared to those with only filler. This study introduces a novel approach for improving the toughness of brazed joints in practical applications using titanium-based fillers.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.