ECAP 和时效对铝铜镁硅合金微观结构的影响

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
M.R. Gazizov , S.Yu. Mironov , R. Holmestad , M.Yu. Gazizova , R.O. Kaibyshev
{"title":"ECAP 和时效对铝铜镁硅合金微观结构的影响","authors":"M.R. Gazizov ,&nbsp;S.Yu. Mironov ,&nbsp;R. Holmestad ,&nbsp;M.Yu. Gazizova ,&nbsp;R.O. Kaibyshev","doi":"10.1016/j.matchar.2024.114500","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of equal-channel-angular pressing (ECAP) on the microstructure and precipitation of an Al-4.7Cu-0.74 Mg-0.51Si-0.48Mn-0.10Cr-0.09Ti-0.02Fe (all wt%) has been studied using aberration-corrected scanning transmission electron microscopy. The ECAP followed by a short-term aging provides a superior combination of strength and ductility in the present alloy. The ECAPed alloy shows a substantially different precipitation behavior in the deformation bands (DBs) compared to extended regions (ERs) during aging. The relatively coarse particles of the equilibrium θ (Al<sub>2</sub>Cu) and β (Mg<sub>2</sub>Si) phases were found to form along deformation-induced grain/subgrain boundaries within the DBs after short-term aging. In the present alloy after ECAP and aging, the phases continuously decorating dislocation lines or forming the discrete particles in the ERs are similar to those in the bulk matrix after conventional aging. The macroscopic strengths have been estimated for the ERs and DBs in the samples after ECAP and aging. The former, i.e., ERs, with predominant strengthening contributions originating from solid solution, precipitation and dislocations, is likely have a higher YS than the latter with the relatively coarse equilibrium particles and mainly strengthened by only grain boundaries and dislocations.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114500"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ECAP and aging on microstructure of an Al-Cu-Mg-Si alloy\",\"authors\":\"M.R. Gazizov ,&nbsp;S.Yu. Mironov ,&nbsp;R. Holmestad ,&nbsp;M.Yu. Gazizova ,&nbsp;R.O. Kaibyshev\",\"doi\":\"10.1016/j.matchar.2024.114500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of equal-channel-angular pressing (ECAP) on the microstructure and precipitation of an Al-4.7Cu-0.74 Mg-0.51Si-0.48Mn-0.10Cr-0.09Ti-0.02Fe (all wt%) has been studied using aberration-corrected scanning transmission electron microscopy. The ECAP followed by a short-term aging provides a superior combination of strength and ductility in the present alloy. The ECAPed alloy shows a substantially different precipitation behavior in the deformation bands (DBs) compared to extended regions (ERs) during aging. The relatively coarse particles of the equilibrium θ (Al<sub>2</sub>Cu) and β (Mg<sub>2</sub>Si) phases were found to form along deformation-induced grain/subgrain boundaries within the DBs after short-term aging. In the present alloy after ECAP and aging, the phases continuously decorating dislocation lines or forming the discrete particles in the ERs are similar to those in the bulk matrix after conventional aging. The macroscopic strengths have been estimated for the ERs and DBs in the samples after ECAP and aging. The former, i.e., ERs, with predominant strengthening contributions originating from solid solution, precipitation and dislocations, is likely have a higher YS than the latter with the relatively coarse equilibrium particles and mainly strengthened by only grain boundaries and dislocations.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114500\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324008817\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008817","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

使用畸变校正扫描透射电子显微镜研究了等沟道角压(ECAP)对 Al-4.7Cu-0.74Mg-0.51Si-0.48Mn-0.10Cr-0.09Ti-0.02Fe(所有重量百分比)的微观结构和析出的影响。经过 ECAP 和短期时效处理后,该合金的强度和延展性得到了很好的结合。在老化过程中,ECAP 合金在变形带(DBs)和扩展区(ERs)的析出行为大不相同。在短期时效后,发现平衡θ(Al2Cu)和β(Mg2Si)相的相对较粗颗粒沿着变形引起的晶粒/亚晶粒边界在 DBs 内形成。在本合金中,经过 ECAP 和时效后,ERs 中不断装饰位错线或形成离散颗粒的相与常规时效后的块状基体中的相类似。对经过 ECAP 和时效处理的样品中的 ER 和 DB 进行了宏观强度估算。前者(即ERs)的主要强化作用来自固溶体、沉淀和位错,其YS值可能高于后者(后者的平衡颗粒相对较粗,主要强化作用仅来自晶界和位错)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of ECAP and aging on microstructure of an Al-Cu-Mg-Si alloy
The effect of equal-channel-angular pressing (ECAP) on the microstructure and precipitation of an Al-4.7Cu-0.74 Mg-0.51Si-0.48Mn-0.10Cr-0.09Ti-0.02Fe (all wt%) has been studied using aberration-corrected scanning transmission electron microscopy. The ECAP followed by a short-term aging provides a superior combination of strength and ductility in the present alloy. The ECAPed alloy shows a substantially different precipitation behavior in the deformation bands (DBs) compared to extended regions (ERs) during aging. The relatively coarse particles of the equilibrium θ (Al2Cu) and β (Mg2Si) phases were found to form along deformation-induced grain/subgrain boundaries within the DBs after short-term aging. In the present alloy after ECAP and aging, the phases continuously decorating dislocation lines or forming the discrete particles in the ERs are similar to those in the bulk matrix after conventional aging. The macroscopic strengths have been estimated for the ERs and DBs in the samples after ECAP and aging. The former, i.e., ERs, with predominant strengthening contributions originating from solid solution, precipitation and dislocations, is likely have a higher YS than the latter with the relatively coarse equilibrium particles and mainly strengthened by only grain boundaries and dislocations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信