{"title":"论非自治基尔霍夫方程归一化基态解的质量浓度","authors":"Miao Du , Xiaohan Gao","doi":"10.1016/j.aml.2024.109371","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on a class of non-autonomous Kirchhoff equations, that is, <span><math><mrow><mo>−</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span> are constants, <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> is unknown and appears as a Lagrange multiplier, <span><math><mrow><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>K</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is a potential function. Under certain assumptions on the potential <span><math><mi>K</mi></math></span>, the concentration behavior of normalized ground state solutions is analyzed by using variational methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"161 ","pages":"Article 109371"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mass concentration of normalized ground state solutions for non-autonomous Kirchhoff equations\",\"authors\":\"Miao Du , Xiaohan Gao\",\"doi\":\"10.1016/j.aml.2024.109371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we focus on a class of non-autonomous Kirchhoff equations, that is, <span><math><mrow><mo>−</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span> are constants, <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> is unknown and appears as a Lagrange multiplier, <span><math><mrow><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>K</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is a potential function. Under certain assumptions on the potential <span><math><mi>K</mi></math></span>, the concentration behavior of normalized ground state solutions is analyzed by using variational methods.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"161 \",\"pages\":\"Article 109371\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003914\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究一类非自治基尔霍夫方程,即 R3 中的-(a+b∫R3|∇u|2dx)Δu-λu=K(x)|u|p-2u,其中 a、b>0 为常数,λ∈R 为未知数并作为拉格朗日乘数出现,2<p<6,K:R3→R 为势函数。在电势 K 的某些假设条件下,利用变分法分析了归一化基态解的浓度行为。
On the mass concentration of normalized ground state solutions for non-autonomous Kirchhoff equations
In this paper, we focus on a class of non-autonomous Kirchhoff equations, that is, in , where are constants, is unknown and appears as a Lagrange multiplier, and is a potential function. Under certain assumptions on the potential , the concentration behavior of normalized ground state solutions is analyzed by using variational methods.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.