铝/钛酸钾晶须复合材料在流变铸造过程中的微观结构和性能演变

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Lu , Xumin Hong , Xia Wu , Zhaoting Xiong , Zhanyong Zhao , Chunhua Li , Lei Yang , Zhi Wang , Shukhrat Giyasov , Xiaopeng Lu , Xiaoli Cui , Wenqing Shi , Di Tie
{"title":"铝/钛酸钾晶须复合材料在流变铸造过程中的微观结构和性能演变","authors":"Chao Lu ,&nbsp;Xumin Hong ,&nbsp;Xia Wu ,&nbsp;Zhaoting Xiong ,&nbsp;Zhanyong Zhao ,&nbsp;Chunhua Li ,&nbsp;Lei Yang ,&nbsp;Zhi Wang ,&nbsp;Shukhrat Giyasov ,&nbsp;Xiaopeng Lu ,&nbsp;Xiaoli Cui ,&nbsp;Wenqing Shi ,&nbsp;Di Tie","doi":"10.1016/j.matlet.2024.137712","DOIUrl":null,"url":null,"abstract":"<div><div>Potassium titanate whiskers (PTWs) have been proved effective in improving aluminium alloys’ mechanical performance whilst reducing their thermal expansivity, which are both crucial to the industrial applications. Here, we fabricate an Al-Zn-Mg-Cu alloy composite reinforced with 10.0 vol% PTW via rheological casting and characterize its microstructure, strength and thermal expansivity evolution at different process parameters. The distribution of PTW in alloy matrix was more homogeneous with growing treating time. After 40 s semi-solid slurring, the final average length of PTW was reduced to 4.1 μm. Meanwhile, the ultimate tensile strength of the composite gained ca. 27.0 % increase, and the thermal expansivity was significantly reduced. Our results demonstrate the feasibility to fabricate high-performance aluminium/PTW composite while reducing the PTW addition via semi-solid rheological processing. Our findings also help better understand the crushing and dispersing behavior of PTW in aluminium matrix during semi-solid solidification.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137712"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and property evolution of aluminium/potassium titanate whiskers composite during Rheo-casting\",\"authors\":\"Chao Lu ,&nbsp;Xumin Hong ,&nbsp;Xia Wu ,&nbsp;Zhaoting Xiong ,&nbsp;Zhanyong Zhao ,&nbsp;Chunhua Li ,&nbsp;Lei Yang ,&nbsp;Zhi Wang ,&nbsp;Shukhrat Giyasov ,&nbsp;Xiaopeng Lu ,&nbsp;Xiaoli Cui ,&nbsp;Wenqing Shi ,&nbsp;Di Tie\",\"doi\":\"10.1016/j.matlet.2024.137712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Potassium titanate whiskers (PTWs) have been proved effective in improving aluminium alloys’ mechanical performance whilst reducing their thermal expansivity, which are both crucial to the industrial applications. Here, we fabricate an Al-Zn-Mg-Cu alloy composite reinforced with 10.0 vol% PTW via rheological casting and characterize its microstructure, strength and thermal expansivity evolution at different process parameters. The distribution of PTW in alloy matrix was more homogeneous with growing treating time. After 40 s semi-solid slurring, the final average length of PTW was reduced to 4.1 μm. Meanwhile, the ultimate tensile strength of the composite gained ca. 27.0 % increase, and the thermal expansivity was significantly reduced. Our results demonstrate the feasibility to fabricate high-performance aluminium/PTW composite while reducing the PTW addition via semi-solid rheological processing. Our findings also help better understand the crushing and dispersing behavior of PTW in aluminium matrix during semi-solid solidification.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"379 \",\"pages\":\"Article 137712\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018524\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018524","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钛酸钾晶须(PTW)已被证明可有效改善铝合金的机械性能,同时降低其热膨胀率,这两点对工业应用都至关重要。在此,我们通过流变铸造法制造了一种使用 10.0 Vol% PTW 增强的铝锌镁铜合金复合材料,并对其在不同工艺参数下的微观结构、强度和热膨胀系数演变进行了表征。随着处理时间的延长,PTW 在合金基体中的分布更加均匀。经过 40 秒的半固态粉碎后,PTW 的最终平均长度降至 4.1 μm。同时,复合材料的极限拉伸强度提高了约 27.0%,热膨胀系数显著降低。我们的研究结果表明,在通过半固态流变加工减少 PTW 添加量的同时,制造高性能铝/PTW 复合材料是可行的。我们的研究结果还有助于更好地理解半固态凝固过程中 PTW 在铝基体中的破碎和分散行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microstructure and property evolution of aluminium/potassium titanate whiskers composite during Rheo-casting

Microstructure and property evolution of aluminium/potassium titanate whiskers composite during Rheo-casting
Potassium titanate whiskers (PTWs) have been proved effective in improving aluminium alloys’ mechanical performance whilst reducing their thermal expansivity, which are both crucial to the industrial applications. Here, we fabricate an Al-Zn-Mg-Cu alloy composite reinforced with 10.0 vol% PTW via rheological casting and characterize its microstructure, strength and thermal expansivity evolution at different process parameters. The distribution of PTW in alloy matrix was more homogeneous with growing treating time. After 40 s semi-solid slurring, the final average length of PTW was reduced to 4.1 μm. Meanwhile, the ultimate tensile strength of the composite gained ca. 27.0 % increase, and the thermal expansivity was significantly reduced. Our results demonstrate the feasibility to fabricate high-performance aluminium/PTW composite while reducing the PTW addition via semi-solid rheological processing. Our findings also help better understand the crushing and dispersing behavior of PTW in aluminium matrix during semi-solid solidification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信