Yanping Zheng, Xingfang Luo, Ce Hu, Zhenzhen Jiang, Cailei Yuan, Hang Zhou
{"title":"调节界面态以提高基于 HfO2 矩阵嵌入 CoO 纳米粒子的记忆电容器的电荷存储性能","authors":"Yanping Zheng, Xingfang Luo, Ce Hu, Zhenzhen Jiang, Cailei Yuan, Hang Zhou","doi":"10.1016/j.matlet.2024.137686","DOIUrl":null,"url":null,"abstract":"<div><div>The surface defect and interfacial states in nanoparticles have strong carrier trapping capacity and are closely related to the charge storage capacity and life of nanoparticles memory devices. In this work, solid and hollow CoO nanoparticles confined in amorphous HfO<sub>2</sub> high dielectric thin film with similar size and density were synthesized and characterized, and the effect of interfacial state regulation of nanoparticles on charge storage performance of memory capacitors was studied by comparing the experimental data of the two samples. A larger memory window was observed in the memory capacitor based on hollow CoO nanoparticles comparing to the solid one, which is attributed to an abundant of defects originated from the surface and grain boundaries of CoO nanoparticles with hollow structure. Artificially controlling surface defects and interface states of nanoparticles from the nano-floating gate memory is of great significance in the development of memory devices.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137686"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation on interfacial states for the improved charge storage performance in HfO2 matrix embedded CoO nanoparticles-based memory capacitors\",\"authors\":\"Yanping Zheng, Xingfang Luo, Ce Hu, Zhenzhen Jiang, Cailei Yuan, Hang Zhou\",\"doi\":\"10.1016/j.matlet.2024.137686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surface defect and interfacial states in nanoparticles have strong carrier trapping capacity and are closely related to the charge storage capacity and life of nanoparticles memory devices. In this work, solid and hollow CoO nanoparticles confined in amorphous HfO<sub>2</sub> high dielectric thin film with similar size and density were synthesized and characterized, and the effect of interfacial state regulation of nanoparticles on charge storage performance of memory capacitors was studied by comparing the experimental data of the two samples. A larger memory window was observed in the memory capacitor based on hollow CoO nanoparticles comparing to the solid one, which is attributed to an abundant of defects originated from the surface and grain boundaries of CoO nanoparticles with hollow structure. Artificially controlling surface defects and interface states of nanoparticles from the nano-floating gate memory is of great significance in the development of memory devices.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"379 \",\"pages\":\"Article 137686\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018263\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018263","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modulation on interfacial states for the improved charge storage performance in HfO2 matrix embedded CoO nanoparticles-based memory capacitors
The surface defect and interfacial states in nanoparticles have strong carrier trapping capacity and are closely related to the charge storage capacity and life of nanoparticles memory devices. In this work, solid and hollow CoO nanoparticles confined in amorphous HfO2 high dielectric thin film with similar size and density were synthesized and characterized, and the effect of interfacial state regulation of nanoparticles on charge storage performance of memory capacitors was studied by comparing the experimental data of the two samples. A larger memory window was observed in the memory capacitor based on hollow CoO nanoparticles comparing to the solid one, which is attributed to an abundant of defects originated from the surface and grain boundaries of CoO nanoparticles with hollow structure. Artificially controlling surface defects and interface states of nanoparticles from the nano-floating gate memory is of great significance in the development of memory devices.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive