Jiajia Wang , Jiaxin Fan , Meiyu Fan , Xiyan Yue , Juan Zhang , Zhao Liu , Zhengkun Xie , Qiang Zhao , Abuliti Abudula , Guoqing Guan
{"title":"MOF 衍生的 NiS/ZnS 异质结构可提高钠离子电池的电化学动力学性能","authors":"Jiajia Wang , Jiaxin Fan , Meiyu Fan , Xiyan Yue , Juan Zhang , Zhao Liu , Zhengkun Xie , Qiang Zhao , Abuliti Abudula , Guoqing Guan","doi":"10.1016/j.jpowsour.2024.235803","DOIUrl":null,"url":null,"abstract":"<div><div>Metal sulfides has attracted numerous attentions as the anode material for sodium ion batteries (SIBs) because of their excellent theoretical capacities. However, these materials still suffer from poor electrochemical performance caused by the volume expansion and sluggish electrochemical kinetics. In this work, the NiS/ZnS embedded in carbon material with heterogeneous interface is fabricated through a sulphurization process using metal organic framework (MOF) as precursor followed by acid treatment (NiS/ZnS@C-AT). It is found that the generated abundant heterogeneous interface in the present materials effectively promotes the electronic conductivity and Na<sup>+</sup> diffusion, which enhances the electrochemical kinetics, causing good rate performance. Moreover, the carbon material produced by the sulphurization process with high temperature can increase the structural stability of the NiS/ZnS material during charging/discharging process, resulting in long cycling stability. As a result, the NiS/ZnS@C-AT based anode for SIBs exhibits an excellent reversible capacity of 456.8 mA h g<sup>−1</sup>@ 0. 1 A g<sup>−1</sup>, good cycling stability with 404.5 mA h g<sup>−1</sup>@2 A g<sup>−1</sup> after 1900 cycles, and superior rate performance with 381.3 mA h g<sup>−1</sup>@5 A g<sup>−1</sup>.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235803"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF derived NiS/ZnS heterostructure enhancing the electrochemical kinetics for sodium ion batteries\",\"authors\":\"Jiajia Wang , Jiaxin Fan , Meiyu Fan , Xiyan Yue , Juan Zhang , Zhao Liu , Zhengkun Xie , Qiang Zhao , Abuliti Abudula , Guoqing Guan\",\"doi\":\"10.1016/j.jpowsour.2024.235803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal sulfides has attracted numerous attentions as the anode material for sodium ion batteries (SIBs) because of their excellent theoretical capacities. However, these materials still suffer from poor electrochemical performance caused by the volume expansion and sluggish electrochemical kinetics. In this work, the NiS/ZnS embedded in carbon material with heterogeneous interface is fabricated through a sulphurization process using metal organic framework (MOF) as precursor followed by acid treatment (NiS/ZnS@C-AT). It is found that the generated abundant heterogeneous interface in the present materials effectively promotes the electronic conductivity and Na<sup>+</sup> diffusion, which enhances the electrochemical kinetics, causing good rate performance. Moreover, the carbon material produced by the sulphurization process with high temperature can increase the structural stability of the NiS/ZnS material during charging/discharging process, resulting in long cycling stability. As a result, the NiS/ZnS@C-AT based anode for SIBs exhibits an excellent reversible capacity of 456.8 mA h g<sup>−1</sup>@ 0. 1 A g<sup>−1</sup>, good cycling stability with 404.5 mA h g<sup>−1</sup>@2 A g<sup>−1</sup> after 1900 cycles, and superior rate performance with 381.3 mA h g<sup>−1</sup>@5 A g<sup>−1</sup>.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"626 \",\"pages\":\"Article 235803\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324017555\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017555","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
金属硫化物因其出色的理论容量而成为钠离子电池(SIB)的负极材料,受到了广泛关注。然而,由于体积膨胀和电化学动力学缓慢,这些材料的电化学性能仍然较差。本研究以金属有机框架(MOF)为前驱体,通过硫化工艺和酸处理(NiS/ZnS@C-AT)制备了具有异质界面的嵌在碳材料中的 NiS/ZnS。研究发现,本材料中生成的丰富异质界面有效促进了电子导电性和 Na+ 扩散,从而增强了电化学动力学,使其具有良好的速率性能。此外,高温硫化过程中产生的碳材料可以提高 NiS/ZnS 材料在充放电过程中的结构稳定性,从而实现长循环稳定性。因此,基于 NiS/ZnS@C-AT 的 SIB 负极具有出色的可逆容量(456.8 mA h g-1@0. 1 A g-1)、良好的循环稳定性(1900 次循环后 404.5 mA h g-1@2 A g-1)和卓越的速率性能(381.3 mA h g-1@5 A g-1)。
MOF derived NiS/ZnS heterostructure enhancing the electrochemical kinetics for sodium ion batteries
Metal sulfides has attracted numerous attentions as the anode material for sodium ion batteries (SIBs) because of their excellent theoretical capacities. However, these materials still suffer from poor electrochemical performance caused by the volume expansion and sluggish electrochemical kinetics. In this work, the NiS/ZnS embedded in carbon material with heterogeneous interface is fabricated through a sulphurization process using metal organic framework (MOF) as precursor followed by acid treatment (NiS/ZnS@C-AT). It is found that the generated abundant heterogeneous interface in the present materials effectively promotes the electronic conductivity and Na+ diffusion, which enhances the electrochemical kinetics, causing good rate performance. Moreover, the carbon material produced by the sulphurization process with high temperature can increase the structural stability of the NiS/ZnS material during charging/discharging process, resulting in long cycling stability. As a result, the NiS/ZnS@C-AT based anode for SIBs exhibits an excellent reversible capacity of 456.8 mA h g−1@ 0. 1 A g−1, good cycling stability with 404.5 mA h g−1@2 A g−1 after 1900 cycles, and superior rate performance with 381.3 mA h g−1@5 A g−1.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems