空间传染病动态的条件逻辑个体水平模型

IF 8.8 3区 医学 Q1 Medicine
Tahmina Akter , Rob Deardon
{"title":"空间传染病动态的条件逻辑个体水平模型","authors":"Tahmina Akter ,&nbsp;Rob Deardon","doi":"10.1016/j.idm.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we introduce a novel framework for modelling the spatiotemporal dynamics of disease spread known as conditional logistic individual-level models (CL-ILM's). This framework alleviates much of the computational burden associated with traditional spatiotemporal individual-level models for epidemics, and facilitates the use of standard software for fitting logistic models when analysing spatiotemporal disease patterns. The models can be fitted in either a frequentist or Bayesian framework. Here, we apply the new spatial CL-ILM to simulated data, semi-real data from the UK 2001 foot-and-mouth disease epidemic, and real data from a greenhouse experiment on the spread of tomato spotted wilt virus.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 1","pages":"Pages 268-286"},"PeriodicalIF":8.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional logistic individual-level models of spatial infectious disease dynamics\",\"authors\":\"Tahmina Akter ,&nbsp;Rob Deardon\",\"doi\":\"10.1016/j.idm.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, we introduce a novel framework for modelling the spatiotemporal dynamics of disease spread known as conditional logistic individual-level models (CL-ILM's). This framework alleviates much of the computational burden associated with traditional spatiotemporal individual-level models for epidemics, and facilitates the use of standard software for fitting logistic models when analysing spatiotemporal disease patterns. The models can be fitted in either a frequentist or Bayesian framework. Here, we apply the new spatial CL-ILM to simulated data, semi-real data from the UK 2001 foot-and-mouth disease epidemic, and real data from a greenhouse experiment on the spread of tomato spotted wilt virus.</div></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":\"10 1\",\"pages\":\"Pages 268-286\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042724001234\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724001234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍一种用于模拟疾病传播时空动态的新型框架,即条件逻辑个体水平模型(CL-ILM)。该框架减轻了传统流行病时空个体水平模型的大部分计算负担,便于在分析时空疾病模式时使用标准软件拟合逻辑模型。这些模型可以在频数主义或贝叶斯框架内拟合。在此,我们将新的空间 CL-ILM 应用于模拟数据、英国 2001 年口蹄疫疫情的半真实数据以及番茄斑萎病毒传播温室实验的真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional logistic individual-level models of spatial infectious disease dynamics
Here, we introduce a novel framework for modelling the spatiotemporal dynamics of disease spread known as conditional logistic individual-level models (CL-ILM's). This framework alleviates much of the computational burden associated with traditional spatiotemporal individual-level models for epidemics, and facilitates the use of standard software for fitting logistic models when analysing spatiotemporal disease patterns. The models can be fitted in either a frequentist or Bayesian framework. Here, we apply the new spatial CL-ILM to simulated data, semi-real data from the UK 2001 foot-and-mouth disease epidemic, and real data from a greenhouse experiment on the spread of tomato spotted wilt virus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infectious Disease Modelling
Infectious Disease Modelling Mathematics-Applied Mathematics
CiteScore
17.00
自引率
3.40%
发文量
73
审稿时长
17 weeks
期刊介绍: Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信