用于骨内固定的微合金镁基降解植入物

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tingting Niu , Yange Zhang , Shengqiang Liu , Shuntao Li , Hongtao Yang , Tongtong Lu , Yong Sun , Hongxia Sun , Youde Wang , Liying Zhang , Liqun Ren , Yu Jin , Tao Suo , Rui Zan , Yimin Wang , Guodong Zou , Carlos Fernandez , Qiuming Peng
{"title":"用于骨内固定的微合金镁基降解植入物","authors":"Tingting Niu ,&nbsp;Yange Zhang ,&nbsp;Shengqiang Liu ,&nbsp;Shuntao Li ,&nbsp;Hongtao Yang ,&nbsp;Tongtong Lu ,&nbsp;Yong Sun ,&nbsp;Hongxia Sun ,&nbsp;Youde Wang ,&nbsp;Liying Zhang ,&nbsp;Liqun Ren ,&nbsp;Yu Jin ,&nbsp;Tao Suo ,&nbsp;Rui Zan ,&nbsp;Yimin Wang ,&nbsp;Guodong Zou ,&nbsp;Carlos Fernandez ,&nbsp;Qiuming Peng","doi":"10.1016/j.mtla.2024.102258","DOIUrl":null,"url":null,"abstract":"<div><div>The bottleneck for Mg-based degradable implants lies in the mismatching relationship between mechanical properties and degradable rate, resulting in the rapid failure during the <em>in-vivo</em> degradable process and potential toxic role. Herein microalloy-conception has been involved to rectify the equilibrium effects among several aspects. Microstructure, mechanical properties, degradable properties and <em>in-vitro/in-vivo</em> biocompatibility properties of as-extruded pure Mg, Mg-0.15Ca, and Mg-0.15Ca-0.10Mn samples have been investigated. The results show that the Mg-0.15Ca-0.1Mn alloy exhibits a high yield strength (110 MPa) and a low degradable rate (0.82 mm/y). Attractively, the mechanical integrity has been remained in Mg-0.15Ca-0.1Mn alloy after 14 weeks in the rat femoral mode, and a homogenous degradable rate with 0.92 mm/y has been confirmed, which is basically equivalent to the <em>in vitro</em> value. Simultaneously, the low concentration of ions also reveals satisfactory biocompatibility equal to pure Mg, based on organ function and pathological morphology. Our findings reveal that microalloy paves a possible route to design high performance Mg-based intra-osteal fixation implants, resolving the contradictions among the degradable requirements under different body environments.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102258"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microalloy Mg-based degradation implant for intra-osteal fixation\",\"authors\":\"Tingting Niu ,&nbsp;Yange Zhang ,&nbsp;Shengqiang Liu ,&nbsp;Shuntao Li ,&nbsp;Hongtao Yang ,&nbsp;Tongtong Lu ,&nbsp;Yong Sun ,&nbsp;Hongxia Sun ,&nbsp;Youde Wang ,&nbsp;Liying Zhang ,&nbsp;Liqun Ren ,&nbsp;Yu Jin ,&nbsp;Tao Suo ,&nbsp;Rui Zan ,&nbsp;Yimin Wang ,&nbsp;Guodong Zou ,&nbsp;Carlos Fernandez ,&nbsp;Qiuming Peng\",\"doi\":\"10.1016/j.mtla.2024.102258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The bottleneck for Mg-based degradable implants lies in the mismatching relationship between mechanical properties and degradable rate, resulting in the rapid failure during the <em>in-vivo</em> degradable process and potential toxic role. Herein microalloy-conception has been involved to rectify the equilibrium effects among several aspects. Microstructure, mechanical properties, degradable properties and <em>in-vitro/in-vivo</em> biocompatibility properties of as-extruded pure Mg, Mg-0.15Ca, and Mg-0.15Ca-0.10Mn samples have been investigated. The results show that the Mg-0.15Ca-0.1Mn alloy exhibits a high yield strength (110 MPa) and a low degradable rate (0.82 mm/y). Attractively, the mechanical integrity has been remained in Mg-0.15Ca-0.1Mn alloy after 14 weeks in the rat femoral mode, and a homogenous degradable rate with 0.92 mm/y has been confirmed, which is basically equivalent to the <em>in vitro</em> value. Simultaneously, the low concentration of ions also reveals satisfactory biocompatibility equal to pure Mg, based on organ function and pathological morphology. Our findings reveal that microalloy paves a possible route to design high performance Mg-based intra-osteal fixation implants, resolving the contradictions among the degradable requirements under different body environments.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102258\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镁基可降解植入物的瓶颈在于机械性能与可降解速率之间的不匹配关系,导致其在体内降解过程中迅速失效,并可能产生毒性作用。在这里,微合金概念被用来纠正几个方面的平衡效应。研究了挤压纯镁、Mg-0.15Ca 和 Mg-0.15Ca-0.10Mn 样品的微观结构、机械性能、可降解性能以及体外/体内生物相容性。结果表明,Mg-0.15Ca-0.1Mn 合金具有较高的屈服强度(110 兆帕)和较低的降解率(0.82 毫米/年)。有吸引力的是,Mg-0.15Ca-0.1Mn 合金在大鼠股骨模型中使用 14 周后仍能保持机械完整性,并证实其均匀降解率为 0.92 mm/y,与体外值基本相当。同时,根据器官功能和病理形态,低浓度离子也显示出与纯镁相同的令人满意的生物相容性。我们的研究结果表明,微合金为设计高性能的镁基骨膜内固定植入物铺平了道路,解决了不同机体环境下可降解要求之间的矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microalloy Mg-based degradation implant for intra-osteal fixation

Microalloy Mg-based degradation implant for intra-osteal fixation
The bottleneck for Mg-based degradable implants lies in the mismatching relationship between mechanical properties and degradable rate, resulting in the rapid failure during the in-vivo degradable process and potential toxic role. Herein microalloy-conception has been involved to rectify the equilibrium effects among several aspects. Microstructure, mechanical properties, degradable properties and in-vitro/in-vivo biocompatibility properties of as-extruded pure Mg, Mg-0.15Ca, and Mg-0.15Ca-0.10Mn samples have been investigated. The results show that the Mg-0.15Ca-0.1Mn alloy exhibits a high yield strength (110 MPa) and a low degradable rate (0.82 mm/y). Attractively, the mechanical integrity has been remained in Mg-0.15Ca-0.1Mn alloy after 14 weeks in the rat femoral mode, and a homogenous degradable rate with 0.92 mm/y has been confirmed, which is basically equivalent to the in vitro value. Simultaneously, the low concentration of ions also reveals satisfactory biocompatibility equal to pure Mg, based on organ function and pathological morphology. Our findings reveal that microalloy paves a possible route to design high performance Mg-based intra-osteal fixation implants, resolving the contradictions among the degradable requirements under different body environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信