{"title":"东海黑潮二氧化碳海气通量的季节变化及变暖的影响","authors":"Shou-En Tsao , Po-Yen Shen , Chun-Mao Tseng","doi":"10.1016/j.marchem.2024.104469","DOIUrl":null,"url":null,"abstract":"<div><div>The partial pressure of CO<sub>2</sub> (<em>p</em>CO<sub>2</sub>) and associated CO<sub>2</sub> air-sea flux exhibit highly heterogeneous temporal and spatial patterns in ocean margins. In this study, we analyzed a three-year time-series of data sampled during 2011–2014 along the Kuroshio Current within the East China Sea (ECS) to investigate the seasonal pattern of carbonate chemistry and CO<sub>2</sub> air-sea fluxes. Annually, the Kuroshio within the ECS operates as a net CO<sub>2</sub> sink at approximately 1.3 mol C m<sup>−2</sup> yr<sup>−1</sup>, less than estimates over the ECS shelf (∼1.8 mol C m<sup>−2</sup> yr<sup>−1</sup>). The thermal control of <em>p</em>CO<sub>2</sub> makes the Kuroshio a strong CO<sub>2</sub> sink in winter, with a transition to net-neutral, or a weak CO<sub>2</sub> source in summer. On an interannual basis, however, the seasonal CO<sub>2</sub> air-sea fluxes in the Kuroshio may undergo shifts if warming conditions continue.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104469"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal variation of CO2 air-sea flux and effects of warming in the Kuroshio Current of the East China Sea\",\"authors\":\"Shou-En Tsao , Po-Yen Shen , Chun-Mao Tseng\",\"doi\":\"10.1016/j.marchem.2024.104469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The partial pressure of CO<sub>2</sub> (<em>p</em>CO<sub>2</sub>) and associated CO<sub>2</sub> air-sea flux exhibit highly heterogeneous temporal and spatial patterns in ocean margins. In this study, we analyzed a three-year time-series of data sampled during 2011–2014 along the Kuroshio Current within the East China Sea (ECS) to investigate the seasonal pattern of carbonate chemistry and CO<sub>2</sub> air-sea fluxes. Annually, the Kuroshio within the ECS operates as a net CO<sub>2</sub> sink at approximately 1.3 mol C m<sup>−2</sup> yr<sup>−1</sup>, less than estimates over the ECS shelf (∼1.8 mol C m<sup>−2</sup> yr<sup>−1</sup>). The thermal control of <em>p</em>CO<sub>2</sub> makes the Kuroshio a strong CO<sub>2</sub> sink in winter, with a transition to net-neutral, or a weak CO<sub>2</sub> source in summer. On an interannual basis, however, the seasonal CO<sub>2</sub> air-sea fluxes in the Kuroshio may undergo shifts if warming conditions continue.</div></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"267 \",\"pages\":\"Article 104469\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420324001208\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324001208","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
大洋边缘的二氧化碳分压(pCO2)和相关的二氧化碳海气通量呈现出高度异质性的时空模式。在本研究中,我们分析了 2011-2014 年中国东海(ECS)黑潮沿岸三年的时间序列数据,研究了碳酸盐化学和二氧化碳海气通量的季节模式。每年,东海海域内黑潮的二氧化碳净吸收汇约为 1.3 mol C m-2 yr-1,低于东海大陆架的估计值(1.8 mol C m-2 yr-1)。对 pCO2 的热控制使黑潮在冬季成为一个强大的二氧化碳汇,在夏季过渡到净中性或弱二氧化碳源。不过,如果气候继续变暖,黑潮的季节性二氧化碳海气通量可能会发生变化。
Seasonal variation of CO2 air-sea flux and effects of warming in the Kuroshio Current of the East China Sea
The partial pressure of CO2 (pCO2) and associated CO2 air-sea flux exhibit highly heterogeneous temporal and spatial patterns in ocean margins. In this study, we analyzed a three-year time-series of data sampled during 2011–2014 along the Kuroshio Current within the East China Sea (ECS) to investigate the seasonal pattern of carbonate chemistry and CO2 air-sea fluxes. Annually, the Kuroshio within the ECS operates as a net CO2 sink at approximately 1.3 mol C m−2 yr−1, less than estimates over the ECS shelf (∼1.8 mol C m−2 yr−1). The thermal control of pCO2 makes the Kuroshio a strong CO2 sink in winter, with a transition to net-neutral, or a weak CO2 source in summer. On an interannual basis, however, the seasonal CO2 air-sea fluxes in the Kuroshio may undergo shifts if warming conditions continue.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.