So Segawa , Prima Asmara Sejati , Yosephus Ardean Kurnianto Prayitno , Noritaka Saito , Masahiro Takei
{"title":"利用热补偿电阻断层成像技术(tcERT)观察锂-氯化钾熔盐凝固过程中固体体积分数的时空分布情况","authors":"So Segawa , Prima Asmara Sejati , Yosephus Ardean Kurnianto Prayitno , Noritaka Saito , Masahiro Takei","doi":"10.1016/j.apt.2024.104723","DOIUrl":null,"url":null,"abstract":"<div><div>Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification has been visualized by thermal-compensated electrical resistance tomography (<em>tc</em>ERT). The <em>tc</em>ERT consists of three steps which are 1) conductivity interpolation step, 2) conventional conductivity reconstruction step, and 3) phase-fraction conversion step. In the first step, the liquid electrical conductivity <span><math><mrow><msup><mrow><mspace></mspace></mrow><mi>L</mi></msup><mi>σ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> under mole fraction <span><math><mrow><mi>x</mi></mrow></math></span> of KCl and measured temperature <span><math><mrow><mi>T</mi></mrow></math></span> is defined by conductivity interpolation diagram (CID). In the second step, the electrical conductivity during solidification is defined by the conventional heat-resistant ERT as the reconstructed solid and liquid conductivity <span><math><mrow><msup><mrow><mspace></mspace></mrow><mrow><mi>S</mi><mo>+</mo><mi>L</mi></mrow></msup><mrow><mi>σ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mrow></math></span>. From both steps, the solidification volume fraction <span><math><mrow><mi>φ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span> is calculated by the solid–liquid conductivity model (SLCM) which converts <span><math><mrow><msup><mrow><mspace></mspace></mrow><mrow><mi>S</mi><mo>+</mo><mi>L</mi></mrow></msup><mi>σ</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> into <span><math><mrow><mi>φ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span> by referring to <span><math><mrow><msup><mrow><mspace></mspace></mrow><mi>L</mi></msup><mi>σ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. The <em>tc</em>ERT was applied to a composition of 85 mol % LiCl–15 mol % KCl in a crucible with platinum-wire electrodes under the initial temperature <span><math><mrow><msup><mrow><mspace></mspace></mrow><mn>0</mn></msup><mi>T</mi><mo>=</mo></mrow></math></span> 700 °C and at cooling rate <span><math><mrow><mi>γ</mi><mo>=</mo></mrow></math></span> 4.44 °C/min. As the results, inhomogeneous and unsteady <span><math><mrow><mi>φ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span> distributions were precisely visualized with a maximum relative error <span><math><mrow><mi>ζ</mi><mo>=</mo></mrow></math></span> 0.763 of space-mean <span><math><mrow><mo>〈</mo><mi>φ</mi><mo>〉</mo><mo>(</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span>, where the inhomogeneity refers to the spatial gradient perpendicular to the crucible wall, and the fluctuation describes the transition from the nucleation region to the crystal growth region.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 12","pages":"Article 104723"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification by thermal-compensated electrical resistance tomography (tcERT)\",\"authors\":\"So Segawa , Prima Asmara Sejati , Yosephus Ardean Kurnianto Prayitno , Noritaka Saito , Masahiro Takei\",\"doi\":\"10.1016/j.apt.2024.104723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification has been visualized by thermal-compensated electrical resistance tomography (<em>tc</em>ERT). The <em>tc</em>ERT consists of three steps which are 1) conductivity interpolation step, 2) conventional conductivity reconstruction step, and 3) phase-fraction conversion step. In the first step, the liquid electrical conductivity <span><math><mrow><msup><mrow><mspace></mspace></mrow><mi>L</mi></msup><mi>σ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> under mole fraction <span><math><mrow><mi>x</mi></mrow></math></span> of KCl and measured temperature <span><math><mrow><mi>T</mi></mrow></math></span> is defined by conductivity interpolation diagram (CID). In the second step, the electrical conductivity during solidification is defined by the conventional heat-resistant ERT as the reconstructed solid and liquid conductivity <span><math><mrow><msup><mrow><mspace></mspace></mrow><mrow><mi>S</mi><mo>+</mo><mi>L</mi></mrow></msup><mrow><mi>σ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mrow></math></span>. From both steps, the solidification volume fraction <span><math><mrow><mi>φ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span> is calculated by the solid–liquid conductivity model (SLCM) which converts <span><math><mrow><msup><mrow><mspace></mspace></mrow><mrow><mi>S</mi><mo>+</mo><mi>L</mi></mrow></msup><mi>σ</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> into <span><math><mrow><mi>φ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span> by referring to <span><math><mrow><msup><mrow><mspace></mspace></mrow><mi>L</mi></msup><mi>σ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. The <em>tc</em>ERT was applied to a composition of 85 mol % LiCl–15 mol % KCl in a crucible with platinum-wire electrodes under the initial temperature <span><math><mrow><msup><mrow><mspace></mspace></mrow><mn>0</mn></msup><mi>T</mi><mo>=</mo></mrow></math></span> 700 °C and at cooling rate <span><math><mrow><mi>γ</mi><mo>=</mo></mrow></math></span> 4.44 °C/min. As the results, inhomogeneous and unsteady <span><math><mrow><mi>φ</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span> distributions were precisely visualized with a maximum relative error <span><math><mrow><mi>ζ</mi><mo>=</mo></mrow></math></span> 0.763 of space-mean <span><math><mrow><mo>〈</mo><mi>φ</mi><mo>〉</mo><mo>(</mo><mi>T</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span>, where the inhomogeneity refers to the spatial gradient perpendicular to the crucible wall, and the fluctuation describes the transition from the nucleation region to the crystal growth region.</div></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":\"35 12\",\"pages\":\"Article 104723\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883124003996\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003996","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification by thermal-compensated electrical resistance tomography (tcERT)
Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification has been visualized by thermal-compensated electrical resistance tomography (tcERT). The tcERT consists of three steps which are 1) conductivity interpolation step, 2) conventional conductivity reconstruction step, and 3) phase-fraction conversion step. In the first step, the liquid electrical conductivity under mole fraction of KCl and measured temperature is defined by conductivity interpolation diagram (CID). In the second step, the electrical conductivity during solidification is defined by the conventional heat-resistant ERT as the reconstructed solid and liquid conductivity . From both steps, the solidification volume fraction is calculated by the solid–liquid conductivity model (SLCM) which converts into by referring to . The tcERT was applied to a composition of 85 mol % LiCl–15 mol % KCl in a crucible with platinum-wire electrodes under the initial temperature 700 °C and at cooling rate 4.44 °C/min. As the results, inhomogeneous and unsteady distributions were precisely visualized with a maximum relative error 0.763 of space-mean , where the inhomogeneity refers to the spatial gradient perpendicular to the crucible wall, and the fluctuation describes the transition from the nucleation region to the crystal growth region.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)