{"title":"球面上高阶哈迪-赫农类型系统的刘维尔型定理","authors":"Rong Zhang , Vishvesh Kumar , Michael Ruzhansky","doi":"10.1016/j.jmaa.2024.129029","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study Liouville type theorems for the positive solutions to the following higher order Hardy-Hénon type system involving the conformal GJMS operator on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In order to study this we first employ the Mobius transform to transform the above Hardy-Hénon type system on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> into a higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Then, we show that every positive solution of the higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a solution to the associated integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by using polyharmonic average and iteration arguments. We use the method of moving planes in integral form to prove that there are no positive solutions for the integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Finally, together with the symmetry of the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we obtain the Liouville type theorem of the higher order Hardy-Hénon type system involving the GJMS operator on the sphere. The results of this paper are also new even for the Lane-Emden system on the sphere.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129029"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere\",\"authors\":\"Rong Zhang , Vishvesh Kumar , Michael Ruzhansky\",\"doi\":\"10.1016/j.jmaa.2024.129029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study Liouville type theorems for the positive solutions to the following higher order Hardy-Hénon type system involving the conformal GJMS operator on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In order to study this we first employ the Mobius transform to transform the above Hardy-Hénon type system on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> into a higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Then, we show that every positive solution of the higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a solution to the associated integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by using polyharmonic average and iteration arguments. We use the method of moving planes in integral form to prove that there are no positive solutions for the integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Finally, together with the symmetry of the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we obtain the Liouville type theorem of the higher order Hardy-Hénon type system involving the GJMS operator on the sphere. The results of this paper are also new even for the Lane-Emden system on the sphere.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129029\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2400951X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400951X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们将研究球 Sn 上涉及保角 GJMS 算子的下列高阶哈代赫农型系统正解的柳维尔类型定理。为了研究这个问题,我们首先利用莫比斯变换(Mobius transform)将上述球 Sn 上的 Hardy-Hénon 型系统变换为 Rn 上的高阶椭圆系统。然后,我们利用多谐平均和迭代论证证明 Rn 上高阶椭圆系统的每个正解都是 Rn 上相关积分系统的解。我们用积分形式移动平面的方法证明 Rn 上的积分系统没有正解。最后,结合球 Sn 的对称性,我们得到了涉及球上 GJMS 算子的高阶哈代-赫农型系统的柳维尔定理。即使对于球面上的 Lane-Emden 系统,本文的结果也是新的。
Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere
In this paper, we study Liouville type theorems for the positive solutions to the following higher order Hardy-Hénon type system involving the conformal GJMS operator on the sphere . In order to study this we first employ the Mobius transform to transform the above Hardy-Hénon type system on the sphere into a higher order elliptic system on . Then, we show that every positive solution of the higher order elliptic system on is a solution to the associated integral system on by using polyharmonic average and iteration arguments. We use the method of moving planes in integral form to prove that there are no positive solutions for the integral system on . Finally, together with the symmetry of the sphere , we obtain the Liouville type theorem of the higher order Hardy-Hénon type system involving the GJMS operator on the sphere. The results of this paper are also new even for the Lane-Emden system on the sphere.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.