{"title":"特定参数的两个高斯超几何函数的闭式公式","authors":"Gradimir V. Milovanović , Feng Qi","doi":"10.1016/j.jmaa.2024.129024","DOIUrl":null,"url":null,"abstract":"<div><div>Using the Faà di Bruno formula, along with three identities of the partial Bell polynomials, and leveraging two differentiation formulas for the Gauss hypergeometric functions, the authors present several closed-form formulas for the Gauss hypergeometric functions<span><span><span><math><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>2</mn></mrow><none></none></mmultiscripts><mo>(</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>2</mn></mrow><none></none></mmultiscripts><mo>(</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span></span></span> for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> and <span><math><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn></math></span>. These formulas are analyzed in light of three Gauss relations for contiguous functions, with the aid of a relation between the Gauss hypergeometric functions and the Lerch transcendent. Additionally, the authors determine the location and distribution of the zeros of two polynomials involved in these representations, which contain generalized binomial coefficients. By comparing these formulas, they also derive several combinatorial identities.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129024"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-form formulas of two Gauss hypergeometric functions of specific parameters\",\"authors\":\"Gradimir V. Milovanović , Feng Qi\",\"doi\":\"10.1016/j.jmaa.2024.129024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using the Faà di Bruno formula, along with three identities of the partial Bell polynomials, and leveraging two differentiation formulas for the Gauss hypergeometric functions, the authors present several closed-form formulas for the Gauss hypergeometric functions<span><span><span><math><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>2</mn></mrow><none></none></mmultiscripts><mo>(</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>2</mn></mrow><none></none></mmultiscripts><mo>(</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>;</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span></span></span> for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> and <span><math><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn></math></span>. These formulas are analyzed in light of three Gauss relations for contiguous functions, with the aid of a relation between the Gauss hypergeometric functions and the Lerch transcendent. Additionally, the authors determine the location and distribution of the zeros of two polynomials involved in these representations, which contain generalized binomial coefficients. By comparing these formulas, they also derive several combinatorial identities.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129024\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009466\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
作者使用 Faà di Bruno 公式以及贝尔局部多项式的三个同余式,并利用高斯超几何函数的两个微分公式,提出了 n∈{0,1,2,...} 和 |z|<1 时高斯超几何函数 F12(n+12,n+12;n+32;-z2)andF12(1,n+12;n+32;z2) 的几个闭式公式。作者借助高斯超几何函数与勒奇超越之间的关系,根据连续函数的三个高斯关系对这些公式进行了分析。此外,作者还确定了这些表示中涉及的两个多项式的零点位置和分布,其中包含广义二项式系数。通过比较这些公式,他们还推导出了几个组合等式。
Closed-form formulas of two Gauss hypergeometric functions of specific parameters
Using the Faà di Bruno formula, along with three identities of the partial Bell polynomials, and leveraging two differentiation formulas for the Gauss hypergeometric functions, the authors present several closed-form formulas for the Gauss hypergeometric functions for and . These formulas are analyzed in light of three Gauss relations for contiguous functions, with the aid of a relation between the Gauss hypergeometric functions and the Lerch transcendent. Additionally, the authors determine the location and distribution of the zeros of two polynomials involved in these representations, which contain generalized binomial coefficients. By comparing these formulas, they also derive several combinatorial identities.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.