{"title":"乘法赫克算子及其应用","authors":"Chang Heon Kim, Gyucheol Shin","doi":"10.1016/j.jmaa.2024.129002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we define the multiplicative Hecke operators <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for any positive integer on the integral weight meromorphic modular forms for <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. We then show that they have properties similar to those of additive Hecke operators. Moreover, we prove that multiplicative Hecke eigenforms with integer Fourier coefficients are eta quotients, and vice versa. In addition, we prove that the Borcherds product and logarithmic derivative are Hecke equivariant with the multiplicative Hecke operators and the Hecke operators on the half-integral weight harmonic weak Maass forms and weight 2 meromorphic modular forms.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129002"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Hecke operators and their applications\",\"authors\":\"Chang Heon Kim, Gyucheol Shin\",\"doi\":\"10.1016/j.jmaa.2024.129002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we define the multiplicative Hecke operators <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for any positive integer on the integral weight meromorphic modular forms for <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. We then show that they have properties similar to those of additive Hecke operators. Moreover, we prove that multiplicative Hecke eigenforms with integer Fourier coefficients are eta quotients, and vice versa. In addition, we prove that the Borcherds product and logarithmic derivative are Hecke equivariant with the multiplicative Hecke operators and the Hecke operators on the half-integral weight harmonic weak Maass forms and weight 2 meromorphic modular forms.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129002\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009247\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009247","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们定义了Γ0(N)的积分重合形模态上任意正整数的乘法赫克算子 T(n)。然后,我们证明它们具有与加法赫克算子类似的性质。此外,我们还证明了具有整数傅里叶系数的乘法赫克特征形式是 eta 商,反之亦然。此外,我们还证明了鲍彻德斯积和对数导数与乘法赫克算子以及半积分权谐弱马斯形式和权 2 非定常模形式上的赫克算子是赫克等价的。
Multiplicative Hecke operators and their applications
In this paper, we define the multiplicative Hecke operators for any positive integer on the integral weight meromorphic modular forms for . We then show that they have properties similar to those of additive Hecke operators. Moreover, we prove that multiplicative Hecke eigenforms with integer Fourier coefficients are eta quotients, and vice versa. In addition, we prove that the Borcherds product and logarithmic derivative are Hecke equivariant with the multiplicative Hecke operators and the Hecke operators on the half-integral weight harmonic weak Maass forms and weight 2 meromorphic modular forms.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.