具有非光滑初始数据的抛物线积分微分方程的两种混合虚元公式

IF 1.2 3区 数学 Q1 MATHEMATICS
Meghana Suthar , Sangita Yadav
{"title":"具有非光滑初始数据的抛物线积分微分方程的两种混合虚元公式","authors":"Meghana Suthar ,&nbsp;Sangita Yadav","doi":"10.1016/j.jmaa.2024.128981","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents and examines two distinctive approaches to the mixed virtual element method (VEM) applied to parabolic integro-differential equations (PIDEs) with non-smooth initial data. In the first part of the paper, we introduce and analyze a mixed virtual element scheme for PIDE that eliminates the need for the resolvent operator. Through the introduction of a novel projection involving a memory term, coupled with the application of energy arguments and the repeated use of an integral operator, this study establishes optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-error estimates for the two unknowns <em>p</em> and <strong><em>σ</em></strong>. Furthermore, optimal error estimates are derived for the standard mixed formulation with a resolvent kernel. The paper offers a comprehensive analysis of the VEM, encompassing both formulations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128981"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two mixed virtual element formulations for parabolic integro-differential equations with nonsmooth initial data\",\"authors\":\"Meghana Suthar ,&nbsp;Sangita Yadav\",\"doi\":\"10.1016/j.jmaa.2024.128981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents and examines two distinctive approaches to the mixed virtual element method (VEM) applied to parabolic integro-differential equations (PIDEs) with non-smooth initial data. In the first part of the paper, we introduce and analyze a mixed virtual element scheme for PIDE that eliminates the need for the resolvent operator. Through the introduction of a novel projection involving a memory term, coupled with the application of energy arguments and the repeated use of an integral operator, this study establishes optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-error estimates for the two unknowns <em>p</em> and <strong><em>σ</em></strong>. Furthermore, optimal error estimates are derived for the standard mixed formulation with a resolvent kernel. The paper offers a comprehensive analysis of the VEM, encompassing both formulations.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128981\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2400903X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400903X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了将混合虚元法(VEM)应用于具有非光滑初始数据的抛物线积分微分方程(PIDE)的两种独特方法。在论文的第一部分,我们介绍并分析了一种用于 PIDE 的混合虚元方案,该方案不需要解析算子。通过引入涉及记忆项的新投影,结合能量参数的应用和积分算子的重复使用,本研究为两个未知数 p 和 σ 建立了最优 L2- 误差估计。此外,本文还推导出了标准混合公式的最优误差估计值,该公式具有解析核。本文对 VEM 进行了全面分析,涵盖了这两种公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two mixed virtual element formulations for parabolic integro-differential equations with nonsmooth initial data
This article presents and examines two distinctive approaches to the mixed virtual element method (VEM) applied to parabolic integro-differential equations (PIDEs) with non-smooth initial data. In the first part of the paper, we introduce and analyze a mixed virtual element scheme for PIDE that eliminates the need for the resolvent operator. Through the introduction of a novel projection involving a memory term, coupled with the application of energy arguments and the repeated use of an integral operator, this study establishes optimal L2-error estimates for the two unknowns p and σ. Furthermore, optimal error estimates are derived for the standard mixed formulation with a resolvent kernel. The paper offers a comprehensive analysis of the VEM, encompassing both formulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信