Heba Askr , Mahmoud Abdel-Salam , Václav Snášel , Aboul Ella Hassanien
{"title":"基于深度混沌莱维瞪羚优化的太阳能水电解绿色制氢模型","authors":"Heba Askr , Mahmoud Abdel-Salam , Václav Snášel , Aboul Ella Hassanien","doi":"10.1016/j.jestch.2024.101874","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed <em>DeepGaz</em>, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Lévy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon’s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solar-based green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101874"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A green hydrogen production model from solar powered water electrolyze based on deep chaotic Lévy gazelle optimization\",\"authors\":\"Heba Askr , Mahmoud Abdel-Salam , Václav Snášel , Aboul Ella Hassanien\",\"doi\":\"10.1016/j.jestch.2024.101874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed <em>DeepGaz</em>, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Lévy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon’s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solar-based green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"60 \",\"pages\":\"Article 101874\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221509862400260X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221509862400260X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A green hydrogen production model from solar powered water electrolyze based on deep chaotic Lévy gazelle optimization
This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed DeepGaz, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Lévy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon’s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solar-based green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)