{"title":"带 Dirichlet 到 Neumann 算子的非线性边界值问题的无限多小能解","authors":"Shaowei Chen","doi":"10.1016/j.jmaa.2024.129020","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the following nonlinear boundary value problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mi>D</mi><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> if <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> (<span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>) with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> smooth boundary, <span><math><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></math></span>, Δ<em>u</em> is the Laplacian operator, <em>ν</em> is the unit outer normal vector at ∂Ω, and <span><math><mi>D</mi></math></span> is the Dirichlet-to-Neumann operator. We prove that this equation has a sequence of solutions <span><math><mo>{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> that satisfies <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>m</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>m</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>≥</mo><mn>1</mn></math></span>. To prove this, a new critical point theorem without the usual Palais-Smale condition is used.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129020"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many small-energy solutions of a nonlinear boundary value problem with Dirichlet-to-Neumann operator\",\"authors\":\"Shaowei Chen\",\"doi\":\"10.1016/j.jmaa.2024.129020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the following nonlinear boundary value problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mi>D</mi><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mo>+</mo><mo>∞</mo></math></span> if <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> if <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> (<span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>) with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> smooth boundary, <span><math><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></math></span>, Δ<em>u</em> is the Laplacian operator, <em>ν</em> is the unit outer normal vector at ∂Ω, and <span><math><mi>D</mi></math></span> is the Dirichlet-to-Neumann operator. We prove that this equation has a sequence of solutions <span><math><mo>{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> that satisfies <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>m</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>m</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>≥</mo><mn>1</mn></math></span>. To prove this, a new critical point theorem without the usual Palais-Smale condition is used.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129020\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009429\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009429","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Infinitely many small-energy solutions of a nonlinear boundary value problem with Dirichlet-to-Neumann operator
In this study, we investigate the following nonlinear boundary value problem where if and if , Ω is a bounded domain in () with smooth boundary, , Δu is the Laplacian operator, ν is the unit outer normal vector at ∂Ω, and is the Dirichlet-to-Neumann operator. We prove that this equation has a sequence of solutions that satisfies and . To prove this, a new critical point theorem without the usual Palais-Smale condition is used.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.