{"title":"参数区域 [0<b<1,b+1<a<2-b2] 的洛齐映射奇异吸引子","authors":"Khadija Ben Rejeb","doi":"10.1016/j.jmaa.2024.129018","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we give a mathematical proof to the existence of a strange attractor for the Lozi mapping <em>L</em>. More precisely, we prove that <em>L</em> has a unique strange attractor for the parameter region [<span><math><mn>0</mn><mo><</mo><mi>b</mi><mo><</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>b</mi><mo>+</mo><mn>1</mn><mo><</mo><mi>a</mi><mo><</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>] which coincides with the closure of the unstable manifold at the fixed point <span><math><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow></mfrac><mo>)</mo></math></span>. This extends a result obtained by (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad. Sci. 357, (1980), pp. 348-358). On the other hand, we study the dynamical behavior of the map <em>L</em> on its strange attractor and we prove that it is Li-Yorke chaotic. MSC 2010 Primary: 37D45, 37E30.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129018"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strange attractor of the Lozi mappings for the parameter region [0<b<1,b+1<a<2−b2]\",\"authors\":\"Khadija Ben Rejeb\",\"doi\":\"10.1016/j.jmaa.2024.129018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we give a mathematical proof to the existence of a strange attractor for the Lozi mapping <em>L</em>. More precisely, we prove that <em>L</em> has a unique strange attractor for the parameter region [<span><math><mn>0</mn><mo><</mo><mi>b</mi><mo><</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>b</mi><mo>+</mo><mn>1</mn><mo><</mo><mi>a</mi><mo><</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>] which coincides with the closure of the unstable manifold at the fixed point <span><math><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow></mfrac><mo>)</mo></math></span>. This extends a result obtained by (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad. Sci. 357, (1980), pp. 348-358). On the other hand, we study the dynamical behavior of the map <em>L</em> on its strange attractor and we prove that it is Li-Yorke chaotic. MSC 2010 Primary: 37D45, 37E30.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129018\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009405\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009405","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
更确切地说,我们证明了洛齐映射 L 在参数区域 [0<b<1,b+1<a<2-b2] 有一个唯一的奇异吸引子,它与不稳定流形在定点 (11+a-b,b1+a-b) 的闭合重合。这扩展了 (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad.357, (1980), pp.)另一方面,我们研究了映射 L 在其奇异吸引子上的动力学行为,并证明它是李-约克混沌的。MSC 2010 Primary: 37D45, 37E30.
Strange attractor of the Lozi mappings for the parameter region [0
In this paper, we give a mathematical proof to the existence of a strange attractor for the Lozi mapping L. More precisely, we prove that L has a unique strange attractor for the parameter region [] which coincides with the closure of the unstable manifold at the fixed point . This extends a result obtained by (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad. Sci. 357, (1980), pp. 348-358). On the other hand, we study the dynamical behavior of the map L on its strange attractor and we prove that it is Li-Yorke chaotic. MSC 2010 Primary: 37D45, 37E30.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.