{"title":"罗蒙诺索夫类型定理和非拱顶巴拿赫空间的不变子空间问题","authors":"A. El Asri , A. Kubzdela , M. Babahmed","doi":"10.1016/j.jmaa.2024.129043","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space <span><math><mi>E</mi><mo>=</mo><mo>(</mo><mi>E</mi><mo>,</mo><mo>‖</mo><mo>.</mo><mo>‖</mo><mo>)</mo></math></span> over a valued field <span><math><mi>K</mi></math></span> equipped with a non-trivial non-archimedean valuation <span><math><mo>|</mo><mo>.</mo><mo>|</mo></math></span>. Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if <strong>E</strong> has a base, then any compact operator <strong>T</strong> such that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi></mrow></msub><mo></mo><msup><mrow><mo>‖</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>‖</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup><mo>></mo><mn>0</mn></math></span> has a finite-dimensional hyperinvariant subspace. Next we show that if <span><math><mi>K</mi></math></span> is locally compact, then every compact operator <strong>T</strong> on <strong>E</strong> has a hyperinvariant subspace. Afterward, assuming that <span><math><mi>K</mi></math></span> is spherically complete or <strong>E</strong> is of countable type, we provide a necessary condition for a bounded operator on <strong>E</strong> to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where <span><math><mi>K</mi></math></span> is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when <span><math><mi>K</mi></math></span> is locally compact.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129043"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lomonosov type theorems and the invariant subspace problem for non-archimedean Banach spaces\",\"authors\":\"A. El Asri , A. Kubzdela , M. Babahmed\",\"doi\":\"10.1016/j.jmaa.2024.129043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space <span><math><mi>E</mi><mo>=</mo><mo>(</mo><mi>E</mi><mo>,</mo><mo>‖</mo><mo>.</mo><mo>‖</mo><mo>)</mo></math></span> over a valued field <span><math><mi>K</mi></math></span> equipped with a non-trivial non-archimedean valuation <span><math><mo>|</mo><mo>.</mo><mo>|</mo></math></span>. Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if <strong>E</strong> has a base, then any compact operator <strong>T</strong> such that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi></mrow></msub><mo></mo><msup><mrow><mo>‖</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>‖</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup><mo>></mo><mn>0</mn></math></span> has a finite-dimensional hyperinvariant subspace. Next we show that if <span><math><mi>K</mi></math></span> is locally compact, then every compact operator <strong>T</strong> on <strong>E</strong> has a hyperinvariant subspace. Afterward, assuming that <span><math><mi>K</mi></math></span> is spherically complete or <strong>E</strong> is of countable type, we provide a necessary condition for a bounded operator on <strong>E</strong> to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where <span><math><mi>K</mi></math></span> is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when <span><math><mi>K</mi></math></span> is locally compact.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129043\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2400965X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400965X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了有界算子在一个有价域 K 上的非archimedean Banach 空间 E=(E,‖.‖)上的不变(甚至超不变)子空间的存在性,该有价域 K 配备了一个非三元非archimedean 估值|.|。具体来说,我们考虑紧凑算子和与紧凑算子相乘的算子。首先,我们证明,如果 E 有一个基,那么任何使 limn‖Tn‖1n>0 的紧凑算子 T 都有一个有限维的超变子空间。接下来我们证明,如果 K 是局部紧凑的,那么 E 上的每个紧凑算子 T 都有一个超不变子空间。之后,假设 K 是球面完备的或 E 是可数类型的,我们提供了 E 上有界算子具有超不变子空间的必要条件。我们证明了经典的罗蒙诺索夫不变子空间定理在 K 非球面完备的情况下不成立。最后,当 K 局部紧凑时,我们证明了谱准无偶算子的罗蒙诺索夫类型定理。
The Lomonosov type theorems and the invariant subspace problem for non-archimedean Banach spaces
In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space over a valued field equipped with a non-trivial non-archimedean valuation . Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if E has a base, then any compact operator T such that has a finite-dimensional hyperinvariant subspace. Next we show that if is locally compact, then every compact operator T on E has a hyperinvariant subspace. Afterward, assuming that is spherically complete or E is of countable type, we provide a necessary condition for a bounded operator on E to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when is locally compact.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.