{"title":"Bochner-Lebesgue 空间中的黎曼-刘维尔分数积分 III","authors":"Paulo M. Carvalho-Neto , Renato Fehlberg Júnior","doi":"10.1016/j.jmaa.2024.129023","DOIUrl":null,"url":null,"abstract":"<div><div>In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order <span><math><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math></span>, where <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>, mapping from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> to the Banach space <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo><mo>∩</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. This improvement, refines a result by Hardy-Littlewood. To achieve this, we study properties between spaces <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. Additionally, we obtained the boundedness of the fractional integral of order <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span> from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> into the Riemann-Liouville fractional Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>R</mi><mi>L</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129023"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III\",\"authors\":\"Paulo M. Carvalho-Neto , Renato Fehlberg Júnior\",\"doi\":\"10.1016/j.jmaa.2024.129023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order <span><math><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math></span>, where <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>, mapping from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> to the Banach space <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo><mo>∩</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. This improvement, refines a result by Hardy-Littlewood. To achieve this, we study properties between spaces <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. Additionally, we obtained the boundedness of the fractional integral of order <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span> from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> into the Riemann-Liouville fractional Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>R</mi><mi>L</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129023\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009454\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009454","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III
In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order , where , mapping from to the Banach space . This improvement, refines a result by Hardy-Littlewood. To achieve this, we study properties between spaces and . Additionally, we obtained the boundedness of the fractional integral of order from into the Riemann-Liouville fractional Sobolev space .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.