非稳态布尔格斯方程的克兰克-尼科尔森有限元求解系数向量的降维方法

IF 1.2 3区 数学 Q1 MATHEMATICS
Chunxia Huang, Hong Li, Baoli Yin
{"title":"非稳态布尔格斯方程的克兰克-尼科尔森有限元求解系数向量的降维方法","authors":"Chunxia Huang,&nbsp;Hong Li,&nbsp;Baoli Yin","doi":"10.1016/j.jmaa.2024.129031","DOIUrl":null,"url":null,"abstract":"<div><div>This paper primarily focuses on the dimensionality reduction of finite element (FE) solution coefficient vectors for the unsteady Burgers equation, solved using the Crank-Nicolson FE (CNFE) method. The proper orthogonal decomposition (POD) basis is constructed from the snapshot matrix, which is formed using the first <em>L</em> solutions, where <em>L</em> is significantly smaller than the total number of time steps <em>N</em> of the CNFE method. By reconstructing the matrix form of the CNFE method, a reduced-dimension Crank-Nicolson finite element (RDCNFE) method is proposed and stability analysis and error estimates are discussed. Numerical tests are implemented to verify the theoretical results and demonstrate the high efficiency of the RDCNFE method.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129031"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced-dimension method of Crank-Nicolson finite element solution coefficient vectors for the unsteady Burgers equation\",\"authors\":\"Chunxia Huang,&nbsp;Hong Li,&nbsp;Baoli Yin\",\"doi\":\"10.1016/j.jmaa.2024.129031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper primarily focuses on the dimensionality reduction of finite element (FE) solution coefficient vectors for the unsteady Burgers equation, solved using the Crank-Nicolson FE (CNFE) method. The proper orthogonal decomposition (POD) basis is constructed from the snapshot matrix, which is formed using the first <em>L</em> solutions, where <em>L</em> is significantly smaller than the total number of time steps <em>N</em> of the CNFE method. By reconstructing the matrix form of the CNFE method, a reduced-dimension Crank-Nicolson finite element (RDCNFE) method is proposed and stability analysis and error estimates are discussed. Numerical tests are implemented to verify the theoretical results and demonstrate the high efficiency of the RDCNFE method.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129031\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009533\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009533","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要关注使用 Crank-Nicolson FE(CNFE)方法求解的非稳态伯格斯方程的有限元(FE)解系数向量的降维问题。适当的正交分解(POD)基础由快照矩阵构建,快照矩阵由前 L 个解形成,其中 L 明显小于 CNFE 方法的总时间步数 N。通过重构 CNFE 方法的矩阵形式,提出了一种降维 Crank-Nicolson 有限元(RDCNFE)方法,并讨论了稳定性分析和误差估计。通过数值试验验证了理论结果,并证明了 RDCNFE 方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reduced-dimension method of Crank-Nicolson finite element solution coefficient vectors for the unsteady Burgers equation
This paper primarily focuses on the dimensionality reduction of finite element (FE) solution coefficient vectors for the unsteady Burgers equation, solved using the Crank-Nicolson FE (CNFE) method. The proper orthogonal decomposition (POD) basis is constructed from the snapshot matrix, which is formed using the first L solutions, where L is significantly smaller than the total number of time steps N of the CNFE method. By reconstructing the matrix form of the CNFE method, a reduced-dimension Crank-Nicolson finite element (RDCNFE) method is proposed and stability analysis and error estimates are discussed. Numerical tests are implemented to verify the theoretical results and demonstrate the high efficiency of the RDCNFE method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信