审查全球中间层、热层和电离层的长期变化:纳入(半)经验模型的出发点

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Ingrid Cnossen , John T. Emmert , Rolando R. Garcia , Ana G. Elias , Martin G. Mlynczak , Shun-Rong Zhang
{"title":"审查全球中间层、热层和电离层的长期变化:纳入(半)经验模型的出发点","authors":"Ingrid Cnossen ,&nbsp;John T. Emmert ,&nbsp;Rolando R. Garcia ,&nbsp;Ana G. Elias ,&nbsp;Martin G. Mlynczak ,&nbsp;Shun-Rong Zhang","doi":"10.1016/j.asr.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>The climate of the upper atmosphere, including the mesosphere, thermosphere and ionosphere, is changing. As data records are much more limited than in the lower atmosphere and solar variability becomes increasingly dominant at higher altitudes, accurate trend detection and attribution is not straightforward. Nonetheless, observations reliably indicate that, on average, the mesosphere has been cooling, the density in the thermosphere has been decreasing, and ionospheric layers have been shifting down. These global mean changes can be largely attributed to the increase in CO<sub>2</sub> concentration, which causes cooling and thermal contraction in the middle and upper atmosphere. The decline in thermosphere density is particularly relevant from a practical viewpoint, as this reduces atmospheric drag and thereby increases orbital lifetimes and the build-up of space debris. Long-term changes in the ionosphere can have further practical implications and are not only driven by the increase in CO<sub>2</sub> concentration, but also by changes in the Earth’s magnetic field. The empirical models that are mostly used to inform applications in industry on the state of the upper atmosphere, as well as being widely used in science, do not yet properly account for long-term trends in the mesosphere, thermosphere and ionosphere. This is problematic when long-term future projections are needed or models rely strongly on older data. This review provides an overview of the main evidence of long-term trends observed in the mesosphere, thermosphere and ionosphere, together with the latest insights on what causes these trends. It is hoped that this may serve as a starting point to include long-term trends in (semi-) empirical models to benefit all users of these models. We also offer some thoughts on how this could be approached.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"74 11","pages":"Pages 5991-6011"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of global long-term changes in the mesosphere, thermosphere and ionosphere: A starting point for inclusion in (semi-) empirical models\",\"authors\":\"Ingrid Cnossen ,&nbsp;John T. Emmert ,&nbsp;Rolando R. Garcia ,&nbsp;Ana G. Elias ,&nbsp;Martin G. Mlynczak ,&nbsp;Shun-Rong Zhang\",\"doi\":\"10.1016/j.asr.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The climate of the upper atmosphere, including the mesosphere, thermosphere and ionosphere, is changing. As data records are much more limited than in the lower atmosphere and solar variability becomes increasingly dominant at higher altitudes, accurate trend detection and attribution is not straightforward. Nonetheless, observations reliably indicate that, on average, the mesosphere has been cooling, the density in the thermosphere has been decreasing, and ionospheric layers have been shifting down. These global mean changes can be largely attributed to the increase in CO<sub>2</sub> concentration, which causes cooling and thermal contraction in the middle and upper atmosphere. The decline in thermosphere density is particularly relevant from a practical viewpoint, as this reduces atmospheric drag and thereby increases orbital lifetimes and the build-up of space debris. Long-term changes in the ionosphere can have further practical implications and are not only driven by the increase in CO<sub>2</sub> concentration, but also by changes in the Earth’s magnetic field. The empirical models that are mostly used to inform applications in industry on the state of the upper atmosphere, as well as being widely used in science, do not yet properly account for long-term trends in the mesosphere, thermosphere and ionosphere. This is problematic when long-term future projections are needed or models rely strongly on older data. This review provides an overview of the main evidence of long-term trends observed in the mesosphere, thermosphere and ionosphere, together with the latest insights on what causes these trends. It is hoped that this may serve as a starting point to include long-term trends in (semi-) empirical models to benefit all users of these models. We also offer some thoughts on how this could be approached.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"74 11\",\"pages\":\"Pages 5991-6011\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724010123\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724010123","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

高层大气,包括中间层、热层和电离层的气候正在发生变化。与低层大气相比,高层大气的数据记录要有限得多,而且太阳变化在高空越来越占主导地位,因此,准确地探测趋势和归因并不简单。不过,观测数据可靠地表明,平均而言,中间层一直在变冷,热层密度一直在下降,电离层一直在下移。这些全球平均变化在很大程度上归因于二氧化碳浓度的增加,而二氧化碳浓度的增加导致了中层和高层大气的冷却和热收缩。从实际角度来看,热层密度的下降尤为重要,因为这减少了大气阻力,从而延长了轨道寿命,增加了空间碎片的积累。电离层的长期变化会产生进一步的实际影响,其驱动因素不仅是二氧化碳浓度的增加,还有地球磁场的变化。主要用于为工业应用提供高层大气状况信息的经验模型,以及在科学领域广泛使用的模型,尚未适当考虑中间层、热层和电离层的长期趋势。当需要对未来进行长期预测或模型严重依赖旧数据时,这就成了问题。本综述概述了在中间层、热层和电离层观测到的长期趋势的主要证据,以及对造成这些趋势的原因的最新见解。希望以此为起点,将长期趋势纳入(半)经验模式,使这些模式的所有用户受益。我们还就如何处理这一问题提出了一些想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of global long-term changes in the mesosphere, thermosphere and ionosphere: A starting point for inclusion in (semi-) empirical models
The climate of the upper atmosphere, including the mesosphere, thermosphere and ionosphere, is changing. As data records are much more limited than in the lower atmosphere and solar variability becomes increasingly dominant at higher altitudes, accurate trend detection and attribution is not straightforward. Nonetheless, observations reliably indicate that, on average, the mesosphere has been cooling, the density in the thermosphere has been decreasing, and ionospheric layers have been shifting down. These global mean changes can be largely attributed to the increase in CO2 concentration, which causes cooling and thermal contraction in the middle and upper atmosphere. The decline in thermosphere density is particularly relevant from a practical viewpoint, as this reduces atmospheric drag and thereby increases orbital lifetimes and the build-up of space debris. Long-term changes in the ionosphere can have further practical implications and are not only driven by the increase in CO2 concentration, but also by changes in the Earth’s magnetic field. The empirical models that are mostly used to inform applications in industry on the state of the upper atmosphere, as well as being widely used in science, do not yet properly account for long-term trends in the mesosphere, thermosphere and ionosphere. This is problematic when long-term future projections are needed or models rely strongly on older data. This review provides an overview of the main evidence of long-term trends observed in the mesosphere, thermosphere and ionosphere, together with the latest insights on what causes these trends. It is hoped that this may serve as a starting point to include long-term trends in (semi-) empirical models to benefit all users of these models. We also offer some thoughts on how this could be approached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信