隧道火灾中机械通风井排烟和控制性能协同效应的数值研究

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Bin Zhu , Haiyong Cong , Zhuyu Shao , Hairuo Hu , Lili Ye , Yubo Bi , Yiping Zeng
{"title":"隧道火灾中机械通风井排烟和控制性能协同效应的数值研究","authors":"Bin Zhu ,&nbsp;Haiyong Cong ,&nbsp;Zhuyu Shao ,&nbsp;Hairuo Hu ,&nbsp;Lili Ye ,&nbsp;Yubo Bi ,&nbsp;Yiping Zeng","doi":"10.1016/j.undsp.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>High smoke extraction efficiency and a relatively stable smoke layer stratification are both expected in tunnel ventilation systems. The purpose of this paper is to explore the overall performance of mechanical board-coupled shaft under different ventilation strategies. A total of 57 simulations were conducted, and the effects of the distance between the shaft and board (<span><math><mrow><msub><mi>h</mi><mi>D</mi></msub></mrow></math></span>) and ventilation velocity on the overall performance were investigated. The results indicate that the performance of smoke extraction and control will be improved by the application of mechanical ventilation and board. Smoke movement patterns under different working conditions were different, for cases of <span><math><mrow><msub><mi>h</mi><mi>D</mi></msub><mo>≤</mo><mn>0.40</mn><mspace></mspace><mi>m</mi></mrow></math></span> the smoke could propagate through the whole tunnel without backflow, while for cases of <span><math><mrow><msub><mi>h</mi><mi>D</mi></msub><mo>&gt;</mo><mn>0.40</mn><mspace></mspace><mi>m</mi></mrow></math></span>, the backflow exists and the smoke movement can be separated into three periods (propagation, stagnation, and retraction). The critical criterion of backflow was investigated and a simple model was deduced to estimate the maximum propagation length. Moreover, the dimensionless time for the smoke flow to reach its maximum propagation length was established. Finally, a comprehensive index <span><math><mrow><mi>φ</mi></mrow></math></span> was proposed to evaluate the synergistic effects of smoke extraction and control performance. These studies may provide positive significance for the ventilation design.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 44-64"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical studies on the synergistic effects of smoke extraction and control performance by mechanical ventilation shafts during tunnel fires\",\"authors\":\"Bin Zhu ,&nbsp;Haiyong Cong ,&nbsp;Zhuyu Shao ,&nbsp;Hairuo Hu ,&nbsp;Lili Ye ,&nbsp;Yubo Bi ,&nbsp;Yiping Zeng\",\"doi\":\"10.1016/j.undsp.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High smoke extraction efficiency and a relatively stable smoke layer stratification are both expected in tunnel ventilation systems. The purpose of this paper is to explore the overall performance of mechanical board-coupled shaft under different ventilation strategies. A total of 57 simulations were conducted, and the effects of the distance between the shaft and board (<span><math><mrow><msub><mi>h</mi><mi>D</mi></msub></mrow></math></span>) and ventilation velocity on the overall performance were investigated. The results indicate that the performance of smoke extraction and control will be improved by the application of mechanical ventilation and board. Smoke movement patterns under different working conditions were different, for cases of <span><math><mrow><msub><mi>h</mi><mi>D</mi></msub><mo>≤</mo><mn>0.40</mn><mspace></mspace><mi>m</mi></mrow></math></span> the smoke could propagate through the whole tunnel without backflow, while for cases of <span><math><mrow><msub><mi>h</mi><mi>D</mi></msub><mo>&gt;</mo><mn>0.40</mn><mspace></mspace><mi>m</mi></mrow></math></span>, the backflow exists and the smoke movement can be separated into three periods (propagation, stagnation, and retraction). The critical criterion of backflow was investigated and a simple model was deduced to estimate the maximum propagation length. Moreover, the dimensionless time for the smoke flow to reach its maximum propagation length was established. Finally, a comprehensive index <span><math><mrow><mi>φ</mi></mrow></math></span> was proposed to evaluate the synergistic effects of smoke extraction and control performance. These studies may provide positive significance for the ventilation design.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"21 \",\"pages\":\"Pages 44-64\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424001028\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001028","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

隧道通风系统需要较高的排烟效率和相对稳定的烟层分层。本文旨在探讨机械板耦合竖井在不同通风策略下的整体性能。共进行了 57 次模拟,研究了竖井与板之间的距离(hD)和通风速度对整体性能的影响。结果表明,机械通风和板的应用将提高排烟和控烟性能。不同工况下的烟雾运动模式也不同,当 hD≤0.40m 时,烟雾可在整个隧道内传播,不会出现回流现象;而当 hD>0.40m 时,则会出现回流现象,烟雾运动可分为三个时期(传播期、停滞期和回缩期)。研究了回流的临界标准,并推导出一个简单的模型来估算最大传播长度。此外,还确定了烟流达到最大传播长度的无量纲时间。最后,提出了一个综合指标 φ 来评估排烟和控制性能的协同效应。这些研究可为通风设计提供积极意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical studies on the synergistic effects of smoke extraction and control performance by mechanical ventilation shafts during tunnel fires
High smoke extraction efficiency and a relatively stable smoke layer stratification are both expected in tunnel ventilation systems. The purpose of this paper is to explore the overall performance of mechanical board-coupled shaft under different ventilation strategies. A total of 57 simulations were conducted, and the effects of the distance between the shaft and board (hD) and ventilation velocity on the overall performance were investigated. The results indicate that the performance of smoke extraction and control will be improved by the application of mechanical ventilation and board. Smoke movement patterns under different working conditions were different, for cases of hD0.40m the smoke could propagate through the whole tunnel without backflow, while for cases of hD>0.40m, the backflow exists and the smoke movement can be separated into three periods (propagation, stagnation, and retraction). The critical criterion of backflow was investigated and a simple model was deduced to estimate the maximum propagation length. Moreover, the dimensionless time for the smoke flow to reach its maximum propagation length was established. Finally, a comprehensive index φ was proposed to evaluate the synergistic effects of smoke extraction and control performance. These studies may provide positive significance for the ventilation design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信