带有夹层含镁涂层的 "Janus "聚醚醚酮植入体,用于感染组织修复

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xingdan Liu , Haifeng Zhang , Ji Tan , Ziyi Lu , Xiaochun Peng , Liping Ouyang , Xuanyong Liu
{"title":"带有夹层含镁涂层的 \"Janus \"聚醚醚酮植入体,用于感染组织修复","authors":"Xingdan Liu ,&nbsp;Haifeng Zhang ,&nbsp;Ji Tan ,&nbsp;Ziyi Lu ,&nbsp;Xiaochun Peng ,&nbsp;Liping Ouyang ,&nbsp;Xuanyong Liu","doi":"10.1016/j.compositesb.2024.111938","DOIUrl":null,"url":null,"abstract":"<div><div>Having good antibacterial properties and promoting soft and hard tissue repair are the keys to successful implantation of intraosseous transcutaneous. Polyether ether ketone (PEEK) is a class of FDA-approved polymer implants. However, the surface of PEEK is bioinert, which is easy to cause postoperative infection and poor tissue integration. In this study, polypyrrole (Ppy) was polymerized on sulfonated PEEK, Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanosheets were grown in situ on one side, and polycaprolactone (PCL) was then spun on the surface to form a Janus-like surface on PEEK. The Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL composite coating could inhibit bacterial adhesion, and the excellent photothermal properties of Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL and Ppy coatings further promote the removal of bacteria due to the accumulated heat. After the infection was eliminated, the Janus-like surface of modified PEEK switched macrophages to anti-proinflammatory response and promoted both soft and hard tissue repair. The Ppy modified sulfonated PEEK could promote collagen secretion in the soft tissue, while the PCL films on Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL was densified by temperature response under near-infrared light treatment to close the exposed interface of Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanosheets that was more conducive to bone repair. In summary, PEEK with Janus-like surface consisting of Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL and Ppy has multiple biological functions of sequential antibacterial and soft and hard tissue repair, and is a promising candidate material for intraosseous transcutaneous implants.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111938"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Janus” PEEK implant with sandwich Mg-containing coating for infected tissue repair\",\"authors\":\"Xingdan Liu ,&nbsp;Haifeng Zhang ,&nbsp;Ji Tan ,&nbsp;Ziyi Lu ,&nbsp;Xiaochun Peng ,&nbsp;Liping Ouyang ,&nbsp;Xuanyong Liu\",\"doi\":\"10.1016/j.compositesb.2024.111938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Having good antibacterial properties and promoting soft and hard tissue repair are the keys to successful implantation of intraosseous transcutaneous. Polyether ether ketone (PEEK) is a class of FDA-approved polymer implants. However, the surface of PEEK is bioinert, which is easy to cause postoperative infection and poor tissue integration. In this study, polypyrrole (Ppy) was polymerized on sulfonated PEEK, Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanosheets were grown in situ on one side, and polycaprolactone (PCL) was then spun on the surface to form a Janus-like surface on PEEK. The Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL composite coating could inhibit bacterial adhesion, and the excellent photothermal properties of Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL and Ppy coatings further promote the removal of bacteria due to the accumulated heat. After the infection was eliminated, the Janus-like surface of modified PEEK switched macrophages to anti-proinflammatory response and promoted both soft and hard tissue repair. The Ppy modified sulfonated PEEK could promote collagen secretion in the soft tissue, while the PCL films on Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL was densified by temperature response under near-infrared light treatment to close the exposed interface of Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanosheets that was more conducive to bone repair. In summary, PEEK with Janus-like surface consisting of Ppy/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/PCL and Ppy has multiple biological functions of sequential antibacterial and soft and hard tissue repair, and is a promising candidate material for intraosseous transcutaneous implants.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"289 \",\"pages\":\"Article 111938\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007509\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007509","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有良好的抗菌性能和促进软硬组织修复是成功植入骨内经皮植入物的关键。聚醚醚酮(PEEK)是美国食品和药物管理局批准的一类聚合物植入物。然而,PEEK 的表面具有生物惰性,容易造成术后感染和组织整合不良。在这项研究中,聚吡咯(Ppy)被聚合在磺化 PEEK 上,Mg3(PO4)2 纳米片被原位生长在一侧,然后聚己内酯(PCL)被纺在其表面,从而在 PEEK 上形成一个类似于 Janus 的表面。Ppy/Mg3(PO4)2/PCL 复合涂层可抑制细菌附着,而 Ppy/Mg3(PO4)2/PCL 和 Ppy 涂层优异的光热特性又进一步促进了细菌在积热作用下的清除。感染消除后,改性 PEEK 的 Janus 类表面使巨噬细胞转向抗炎反应,促进了软组织和硬组织的修复。经 Ppy 修饰的磺化 PEEK 可促进软组织中胶原蛋白的分泌,而 Ppy/Mg3(PO4)2/PCL 上的 PCL 膜在近红外光处理下通过温度响应致密化,从而封闭了 Mg3(PO4)2 纳米片的暴露界面,更有利于骨修复。总之,由 Ppy/Mg3(PO4)2/PCL 和 Ppy 组成的具有 Janus 类表面的 PEEK 具有连续抗菌和软硬组织修复的多重生物功能,是一种很有前途的骨内经皮植入物候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“Janus” PEEK implant with sandwich Mg-containing coating for infected tissue repair

“Janus” PEEK implant with sandwich Mg-containing coating for infected tissue repair
Having good antibacterial properties and promoting soft and hard tissue repair are the keys to successful implantation of intraosseous transcutaneous. Polyether ether ketone (PEEK) is a class of FDA-approved polymer implants. However, the surface of PEEK is bioinert, which is easy to cause postoperative infection and poor tissue integration. In this study, polypyrrole (Ppy) was polymerized on sulfonated PEEK, Mg3(PO4)2 nanosheets were grown in situ on one side, and polycaprolactone (PCL) was then spun on the surface to form a Janus-like surface on PEEK. The Ppy/Mg3(PO4)2/PCL composite coating could inhibit bacterial adhesion, and the excellent photothermal properties of Ppy/Mg3(PO4)2/PCL and Ppy coatings further promote the removal of bacteria due to the accumulated heat. After the infection was eliminated, the Janus-like surface of modified PEEK switched macrophages to anti-proinflammatory response and promoted both soft and hard tissue repair. The Ppy modified sulfonated PEEK could promote collagen secretion in the soft tissue, while the PCL films on Ppy/Mg3(PO4)2/PCL was densified by temperature response under near-infrared light treatment to close the exposed interface of Mg3(PO4)2 nanosheets that was more conducive to bone repair. In summary, PEEK with Janus-like surface consisting of Ppy/Mg3(PO4)2/PCL and Ppy has multiple biological functions of sequential antibacterial and soft and hard tissue repair, and is a promising candidate material for intraosseous transcutaneous implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信