高透明度、可拉伸嵌入式金属微网电极的无损非机械传输策略

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zeqi Nie , Wenkai Yan , Xin Han , Huihuang Yu , Yapeng Zhang , Mengqi Tian , Xinyu Zhang , Yige Xiong , Peng Cao , Guanhua Zhang
{"title":"高透明度、可拉伸嵌入式金属微网电极的无损非机械传输策略","authors":"Zeqi Nie ,&nbsp;Wenkai Yan ,&nbsp;Xin Han ,&nbsp;Huihuang Yu ,&nbsp;Yapeng Zhang ,&nbsp;Mengqi Tian ,&nbsp;Xinyu Zhang ,&nbsp;Yige Xiong ,&nbsp;Peng Cao ,&nbsp;Guanhua Zhang","doi":"10.1016/j.compositesb.2024.111934","DOIUrl":null,"url":null,"abstract":"<div><div>Stretchable, flexible, transparent electrodes garner significant research interest as indispensable components of flexible optoelectronic devices. However, frequent mechanical transfers during processing pose a considerable challenge in preparing electrodes of scalable size with superior performance and intact structure. Herein, we present a stretchable embedded metallic micromesh (SEMM) electrode with high optoelectronic and robust mechanical properties. The SEMM electrode is fabricated via a damage-free non-mechanical transfer strategy with the assistance of a bifunctional metal transition layer that serves as both a seed layer during electrodeposition and a sacrificial layer during stripping of the electrode. Consequently, the SEMM electrode features a scalable size and an intact structure. By optimizing the electrodeposition parameters, the SEMM achieves high optical transmittance (∼83 %) and low sheet resistance (0.22 Ω sq<sup>−1</sup>), with a figure of merit reaching 8600–53 times greater than that of commercial polyethylene terephthalate-indium tin oxide (PET-ITO). Furthermore, the SEMM exhibits excellent mechanical stability, enduring up to 60 % of tensile strain and maintaining almost constant normalized resistance after 20,000 bending cycles. Based on the SEMM, a transparent film heater yields rapid response time, low operating voltage, and fast defogging capability. This non-mechanical transfer strategy offers a compelling approach for enhancing the structural integrity and scalability of stretchable embedded transparent electrodes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111934"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage-free non-mechanical transfer strategy for highly transparent, stretchable embedded metallic micromesh electrodes\",\"authors\":\"Zeqi Nie ,&nbsp;Wenkai Yan ,&nbsp;Xin Han ,&nbsp;Huihuang Yu ,&nbsp;Yapeng Zhang ,&nbsp;Mengqi Tian ,&nbsp;Xinyu Zhang ,&nbsp;Yige Xiong ,&nbsp;Peng Cao ,&nbsp;Guanhua Zhang\",\"doi\":\"10.1016/j.compositesb.2024.111934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stretchable, flexible, transparent electrodes garner significant research interest as indispensable components of flexible optoelectronic devices. However, frequent mechanical transfers during processing pose a considerable challenge in preparing electrodes of scalable size with superior performance and intact structure. Herein, we present a stretchable embedded metallic micromesh (SEMM) electrode with high optoelectronic and robust mechanical properties. The SEMM electrode is fabricated via a damage-free non-mechanical transfer strategy with the assistance of a bifunctional metal transition layer that serves as both a seed layer during electrodeposition and a sacrificial layer during stripping of the electrode. Consequently, the SEMM electrode features a scalable size and an intact structure. By optimizing the electrodeposition parameters, the SEMM achieves high optical transmittance (∼83 %) and low sheet resistance (0.22 Ω sq<sup>−1</sup>), with a figure of merit reaching 8600–53 times greater than that of commercial polyethylene terephthalate-indium tin oxide (PET-ITO). Furthermore, the SEMM exhibits excellent mechanical stability, enduring up to 60 % of tensile strain and maintaining almost constant normalized resistance after 20,000 bending cycles. Based on the SEMM, a transparent film heater yields rapid response time, low operating voltage, and fast defogging capability. This non-mechanical transfer strategy offers a compelling approach for enhancing the structural integrity and scalability of stretchable embedded transparent electrodes.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"289 \",\"pages\":\"Article 111934\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007467\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007467","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为柔性光电设备不可或缺的部件,可拉伸、柔性、透明电极引起了研究人员的极大兴趣。然而,在加工过程中频繁的机械转移给制备具有优异性能和完整结构的可扩展尺寸电极带来了相当大的挑战。在此,我们提出了一种具有高光电性能和坚固机械性能的可拉伸嵌入式金属微网(SEMM)电极。SEMM 电极是在双功能金属过渡层的辅助下,通过无损伤非机械转移策略制造而成的,该过渡层既是电沉积过程中的种子层,也是电极剥离过程中的牺牲层。因此,SEMM 电极具有可扩展的尺寸和完整的结构。通过优化电沉积参数,SEMM 实现了高透光率(∼83 %)和低薄层电阻(0.22 Ω sq-1),其优点是商用聚对苯二甲酸乙二酯-氧化锡铟(PET-ITO)的 8600-53 倍。此外,SEMM 还具有出色的机械稳定性,可承受高达 60% 的拉伸应变,并在 20,000 次弯曲循环后保持几乎恒定的归一化电阻。基于 SEMM,透明薄膜加热器可实现快速响应时间、低工作电压和快速除雾能力。这种非机械传输策略为增强可拉伸嵌入式透明电极的结构完整性和可扩展性提供了一种令人信服的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Damage-free non-mechanical transfer strategy for highly transparent, stretchable embedded metallic micromesh electrodes

Damage-free non-mechanical transfer strategy for highly transparent, stretchable embedded metallic micromesh electrodes
Stretchable, flexible, transparent electrodes garner significant research interest as indispensable components of flexible optoelectronic devices. However, frequent mechanical transfers during processing pose a considerable challenge in preparing electrodes of scalable size with superior performance and intact structure. Herein, we present a stretchable embedded metallic micromesh (SEMM) electrode with high optoelectronic and robust mechanical properties. The SEMM electrode is fabricated via a damage-free non-mechanical transfer strategy with the assistance of a bifunctional metal transition layer that serves as both a seed layer during electrodeposition and a sacrificial layer during stripping of the electrode. Consequently, the SEMM electrode features a scalable size and an intact structure. By optimizing the electrodeposition parameters, the SEMM achieves high optical transmittance (∼83 %) and low sheet resistance (0.22 Ω sq−1), with a figure of merit reaching 8600–53 times greater than that of commercial polyethylene terephthalate-indium tin oxide (PET-ITO). Furthermore, the SEMM exhibits excellent mechanical stability, enduring up to 60 % of tensile strain and maintaining almost constant normalized resistance after 20,000 bending cycles. Based on the SEMM, a transparent film heater yields rapid response time, low operating voltage, and fast defogging capability. This non-mechanical transfer strategy offers a compelling approach for enhancing the structural integrity and scalability of stretchable embedded transparent electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信