Nicolas Dupont , Joël M. Durant , Øystein Langangen , Leif Christian Stige
{"title":"气候变化下北极食物网中猎物与捕食者之间相互作用的变化","authors":"Nicolas Dupont , Joël M. Durant , Øystein Langangen , Leif Christian Stige","doi":"10.1016/j.pocean.2024.103380","DOIUrl":null,"url":null,"abstract":"<div><div>Global warming affects marine ecosystems by changing environmental conditions, ecosystem structure, and ecosystem functioning. In parts of the Arctic, increased sea temperature and decreased sea ice have led to a poleward expansion of boreal species and increased their interactions with native Arctic species. To investigate and quantify the changing interactions in an Arctic marine food web under new environmental conditions, we studied the interactions between key prey fish species in the seasonally ice-covered parts of the Barents Sea: adult polar cod (<em>Boreogadus saida</em>) and capelin (<em>Mallotus villosus</em>) and one of the major predators in the system: Atlantic cod (<em>Gadus morhua</em>). For this, we compared the predictive performance of threshold models predicting the abundance of adult polar cod as a function of Atlantic cod. Each model was associated with a hypothesis describing prey-predator interactions in different environmental conditions defined by threshold values of summer sea-ice or capelin stock biomass. The best predictive model showed that the predation effect of Atlantic cod on polar cod was strongest in years of low summer sea ice cover and low capelin stock biomass. Our results exemplified that Arctic species such as polar cod may experience increased predation pressure under climate change from boreal species such as Atlantic cod. These effects depend, however, not only on changes in abiotic drivers of species distributions, but also on food-web interactions involving mid-trophic level species such as capelin.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"229 ","pages":"Article 103380"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in prey-predator interactions in an Arctic food web under climate change\",\"authors\":\"Nicolas Dupont , Joël M. Durant , Øystein Langangen , Leif Christian Stige\",\"doi\":\"10.1016/j.pocean.2024.103380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global warming affects marine ecosystems by changing environmental conditions, ecosystem structure, and ecosystem functioning. In parts of the Arctic, increased sea temperature and decreased sea ice have led to a poleward expansion of boreal species and increased their interactions with native Arctic species. To investigate and quantify the changing interactions in an Arctic marine food web under new environmental conditions, we studied the interactions between key prey fish species in the seasonally ice-covered parts of the Barents Sea: adult polar cod (<em>Boreogadus saida</em>) and capelin (<em>Mallotus villosus</em>) and one of the major predators in the system: Atlantic cod (<em>Gadus morhua</em>). For this, we compared the predictive performance of threshold models predicting the abundance of adult polar cod as a function of Atlantic cod. Each model was associated with a hypothesis describing prey-predator interactions in different environmental conditions defined by threshold values of summer sea-ice or capelin stock biomass. The best predictive model showed that the predation effect of Atlantic cod on polar cod was strongest in years of low summer sea ice cover and low capelin stock biomass. Our results exemplified that Arctic species such as polar cod may experience increased predation pressure under climate change from boreal species such as Atlantic cod. These effects depend, however, not only on changes in abiotic drivers of species distributions, but also on food-web interactions involving mid-trophic level species such as capelin.</div></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"229 \",\"pages\":\"Article 103380\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124001861\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001861","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Changes in prey-predator interactions in an Arctic food web under climate change
Global warming affects marine ecosystems by changing environmental conditions, ecosystem structure, and ecosystem functioning. In parts of the Arctic, increased sea temperature and decreased sea ice have led to a poleward expansion of boreal species and increased their interactions with native Arctic species. To investigate and quantify the changing interactions in an Arctic marine food web under new environmental conditions, we studied the interactions between key prey fish species in the seasonally ice-covered parts of the Barents Sea: adult polar cod (Boreogadus saida) and capelin (Mallotus villosus) and one of the major predators in the system: Atlantic cod (Gadus morhua). For this, we compared the predictive performance of threshold models predicting the abundance of adult polar cod as a function of Atlantic cod. Each model was associated with a hypothesis describing prey-predator interactions in different environmental conditions defined by threshold values of summer sea-ice or capelin stock biomass. The best predictive model showed that the predation effect of Atlantic cod on polar cod was strongest in years of low summer sea ice cover and low capelin stock biomass. Our results exemplified that Arctic species such as polar cod may experience increased predation pressure under climate change from boreal species such as Atlantic cod. These effects depend, however, not only on changes in abiotic drivers of species distributions, but also on food-web interactions involving mid-trophic level species such as capelin.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.