富氮无定形碳纳米管上原位生长的 NiFeLDH 纳米片:用于检测抑郁生物标记物的电化学传感平台

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Narmatha Sivaraman , Rithanya Kanagaraj , Rangasamy Thangamuthu
{"title":"富氮无定形碳纳米管上原位生长的 NiFeLDH 纳米片:用于检测抑郁生物标记物的电化学传感平台","authors":"Narmatha Sivaraman ,&nbsp;Rithanya Kanagaraj ,&nbsp;Rangasamy Thangamuthu","doi":"10.1016/j.carbon.2024.119807","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, intrinsic conductivity mismatch of NiFe layered double hydroxide (NFL) catalysts and agglomeration of nanosheets were addressed by introducing N doped carbon nanotubes (NCNTs) which improves catalytic activity. Using a one-step wet chemical process, CNT-supported NiFeLDH nanosheets (NFL/NCNT<sub>x</sub>, x = 20, 50 and 100) were effectively created. This work delves into the lower level sensitive electrochemical detection of serotonin (5-HT) by utilizing synergy of CNT and LDH. The modified NFL/NCNT exhibits better electrochemical activity, appreciable sensitivity and spanned a concentration range of 0.01–400 μM with detection limit stood at 1.2 nM due to the plethora of electrochemical active surface area, remarkable conductivity and appreciable stability. Impressively, 96.0–96.8 % and 96.7–97.2 % recovery rates achieved in human urine and serum samples were well close to HPLC data, signifying its feasibility for real-time monitoring. The operational stability of the proposed sensor retained up to 89.13 % for 6 weeks. The present study highlights that tailoring NFL-NCNT heterojunction is an important strategy for the development of active and stable sensing platform.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ grown NiFeLDH nanosheets over nitrogen rich amorphous carbon nanotubes: An electrochemical sensing platform for the detection of depression biomarker\",\"authors\":\"Narmatha Sivaraman ,&nbsp;Rithanya Kanagaraj ,&nbsp;Rangasamy Thangamuthu\",\"doi\":\"10.1016/j.carbon.2024.119807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, intrinsic conductivity mismatch of NiFe layered double hydroxide (NFL) catalysts and agglomeration of nanosheets were addressed by introducing N doped carbon nanotubes (NCNTs) which improves catalytic activity. Using a one-step wet chemical process, CNT-supported NiFeLDH nanosheets (NFL/NCNT<sub>x</sub>, x = 20, 50 and 100) were effectively created. This work delves into the lower level sensitive electrochemical detection of serotonin (5-HT) by utilizing synergy of CNT and LDH. The modified NFL/NCNT exhibits better electrochemical activity, appreciable sensitivity and spanned a concentration range of 0.01–400 μM with detection limit stood at 1.2 nM due to the plethora of electrochemical active surface area, remarkable conductivity and appreciable stability. Impressively, 96.0–96.8 % and 96.7–97.2 % recovery rates achieved in human urine and serum samples were well close to HPLC data, signifying its feasibility for real-time monitoring. The operational stability of the proposed sensor retained up to 89.13 % for 6 weeks. The present study highlights that tailoring NFL-NCNT heterojunction is an important strategy for the development of active and stable sensing platform.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324010261\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010261","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ grown NiFeLDH nanosheets over nitrogen rich amorphous carbon nanotubes: An electrochemical sensing platform for the detection of depression biomarker
In this work, intrinsic conductivity mismatch of NiFe layered double hydroxide (NFL) catalysts and agglomeration of nanosheets were addressed by introducing N doped carbon nanotubes (NCNTs) which improves catalytic activity. Using a one-step wet chemical process, CNT-supported NiFeLDH nanosheets (NFL/NCNTx, x = 20, 50 and 100) were effectively created. This work delves into the lower level sensitive electrochemical detection of serotonin (5-HT) by utilizing synergy of CNT and LDH. The modified NFL/NCNT exhibits better electrochemical activity, appreciable sensitivity and spanned a concentration range of 0.01–400 μM with detection limit stood at 1.2 nM due to the plethora of electrochemical active surface area, remarkable conductivity and appreciable stability. Impressively, 96.0–96.8 % and 96.7–97.2 % recovery rates achieved in human urine and serum samples were well close to HPLC data, signifying its feasibility for real-time monitoring. The operational stability of the proposed sensor retained up to 89.13 % for 6 weeks. The present study highlights that tailoring NFL-NCNT heterojunction is an important strategy for the development of active and stable sensing platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信