具有优异电磁波吸收性能的形状可调硒化钒/还原氧化石墨烯复合材料

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Guansheng Ma , Yuhao Liu , Kaili Zhang , Guangyu Qin , Yuefeng Yan , Tao Zhang , Xiaoxiao Huang
{"title":"具有优异电磁波吸收性能的形状可调硒化钒/还原氧化石墨烯复合材料","authors":"Guansheng Ma ,&nbsp;Yuhao Liu ,&nbsp;Kaili Zhang ,&nbsp;Guangyu Qin ,&nbsp;Yuefeng Yan ,&nbsp;Tao Zhang ,&nbsp;Xiaoxiao Huang","doi":"10.1016/j.carbon.2024.119795","DOIUrl":null,"url":null,"abstract":"<div><div>The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe<sub>2</sub>) is characterized by a superior electrical conductivity (1 × 10<sup>−3</sup> S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe<sub>2</sub> in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe<sub>2</sub> and shape-tunable VSe<sub>2</sub>/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe<sub>2</sub>/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to −79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape-tunable vanadium selenide/reduced graphene oxide composites with excellent electromagnetic wave absorption performance\",\"authors\":\"Guansheng Ma ,&nbsp;Yuhao Liu ,&nbsp;Kaili Zhang ,&nbsp;Guangyu Qin ,&nbsp;Yuefeng Yan ,&nbsp;Tao Zhang ,&nbsp;Xiaoxiao Huang\",\"doi\":\"10.1016/j.carbon.2024.119795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe<sub>2</sub>) is characterized by a superior electrical conductivity (1 × 10<sup>−3</sup> S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe<sub>2</sub> in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe<sub>2</sub> and shape-tunable VSe<sub>2</sub>/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe<sub>2</sub>/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to −79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324010145\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010145","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape-tunable vanadium selenide/reduced graphene oxide composites with excellent electromagnetic wave absorption performance
The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe2) is characterized by a superior electrical conductivity (1 × 10−3 S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe2 in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe2 and shape-tunable VSe2/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe2/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to −79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信