构建具有丰富异质界面的 NiCo2O4/NiCoO2 共嵌多孔生物碳,实现优异的微波辐射抑菌防护性能

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ting Hu , Di Lan , Jian Wang , Xiaozhong Zhong , Guixian Bu , Pengfei Yin
{"title":"构建具有丰富异质界面的 NiCo2O4/NiCoO2 共嵌多孔生物碳,实现优异的微波辐射抑菌防护性能","authors":"Ting Hu ,&nbsp;Di Lan ,&nbsp;Jian Wang ,&nbsp;Xiaozhong Zhong ,&nbsp;Guixian Bu ,&nbsp;Pengfei Yin","doi":"10.1016/j.carbon.2024.119798","DOIUrl":null,"url":null,"abstract":"<div><div>To attain the stable protection against electromagnetic radiation pollution in complex bacterial environment, herein the NiCo<sub>2</sub>O<sub>4</sub> and NiCoO<sub>2</sub> co-embedded porous bio-carbon (PBC) with outstanding microwave absorption and anti-bacterial ability was successfully obtained via facile carbonization and immersion-annealing route. The component and microstructure of composites are both tightly affected by the synthetic temperature, which also influences the oxygen vacancy content and defect density within them. The strong interface polarizations from plentiful heterogeneous interfaces and dipole polarizations generated by defects and vacancies contribute greatly to the dielectric absorption, while the eddy-current loss and magnetic resonances have a certain effect as well. Under the matched impedance from magnetic-dielectric balance, the optimized absorption strength of prepared composite achieves −38.2 dB at 2.0 mm thickness with broad absorbing bandwidth of 7.01 GHz for only 2.31 mm. Moreover, the plentiful oxygen vacancies induced reactive oxygen species (ROS) together with heavy metal ions from nickel-cobalt ferrites can suppress the reproduction of Gram negative <em>Escherichia coli</em> (<em>E. coli</em>) and Gram positive <em>Staphylococcus aureus</em> (<em>S. aureus</em>) with anti-bacterial rates of 92.4 % and 93.2 %, respectively. The paper offers a novel insight to design dual-functional microwave absorber with excellent bacteriostatic performance for long-term using in complex bacterial environment.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of NiCo2O4/NiCoO2 co-embedded porous bio-carbon with rich heterogeneous interfaces for excellent bacteriostatic microwave radiation protection\",\"authors\":\"Ting Hu ,&nbsp;Di Lan ,&nbsp;Jian Wang ,&nbsp;Xiaozhong Zhong ,&nbsp;Guixian Bu ,&nbsp;Pengfei Yin\",\"doi\":\"10.1016/j.carbon.2024.119798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To attain the stable protection against electromagnetic radiation pollution in complex bacterial environment, herein the NiCo<sub>2</sub>O<sub>4</sub> and NiCoO<sub>2</sub> co-embedded porous bio-carbon (PBC) with outstanding microwave absorption and anti-bacterial ability was successfully obtained via facile carbonization and immersion-annealing route. The component and microstructure of composites are both tightly affected by the synthetic temperature, which also influences the oxygen vacancy content and defect density within them. The strong interface polarizations from plentiful heterogeneous interfaces and dipole polarizations generated by defects and vacancies contribute greatly to the dielectric absorption, while the eddy-current loss and magnetic resonances have a certain effect as well. Under the matched impedance from magnetic-dielectric balance, the optimized absorption strength of prepared composite achieves −38.2 dB at 2.0 mm thickness with broad absorbing bandwidth of 7.01 GHz for only 2.31 mm. Moreover, the plentiful oxygen vacancies induced reactive oxygen species (ROS) together with heavy metal ions from nickel-cobalt ferrites can suppress the reproduction of Gram negative <em>Escherichia coli</em> (<em>E. coli</em>) and Gram positive <em>Staphylococcus aureus</em> (<em>S. aureus</em>) with anti-bacterial rates of 92.4 % and 93.2 %, respectively. The paper offers a novel insight to design dual-functional microwave absorber with excellent bacteriostatic performance for long-term using in complex bacterial environment.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324010170\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010170","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of NiCo2O4/NiCoO2 co-embedded porous bio-carbon with rich heterogeneous interfaces for excellent bacteriostatic microwave radiation protection
To attain the stable protection against electromagnetic radiation pollution in complex bacterial environment, herein the NiCo2O4 and NiCoO2 co-embedded porous bio-carbon (PBC) with outstanding microwave absorption and anti-bacterial ability was successfully obtained via facile carbonization and immersion-annealing route. The component and microstructure of composites are both tightly affected by the synthetic temperature, which also influences the oxygen vacancy content and defect density within them. The strong interface polarizations from plentiful heterogeneous interfaces and dipole polarizations generated by defects and vacancies contribute greatly to the dielectric absorption, while the eddy-current loss and magnetic resonances have a certain effect as well. Under the matched impedance from magnetic-dielectric balance, the optimized absorption strength of prepared composite achieves −38.2 dB at 2.0 mm thickness with broad absorbing bandwidth of 7.01 GHz for only 2.31 mm. Moreover, the plentiful oxygen vacancies induced reactive oxygen species (ROS) together with heavy metal ions from nickel-cobalt ferrites can suppress the reproduction of Gram negative Escherichia coli (E. coli) and Gram positive Staphylococcus aureus (S. aureus) with anti-bacterial rates of 92.4 % and 93.2 %, respectively. The paper offers a novel insight to design dual-functional microwave absorber with excellent bacteriostatic performance for long-term using in complex bacterial environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信