{"title":"基于微尺度岩石力学实验和基于晶粒的精确建模预测火星岩石力学性能的概率分布","authors":"Shuohui Yin , Yingjie Wang , Jingang Liu","doi":"10.1016/j.ijmst.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology. As the mechanical property of Martian rocks is uncertain, it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration. In this paper, a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments (micro-RME), accurate grain-based modeling (AGBM) and upscaling methods based on reliability principles. Firstly, the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer (TIMA) and nanoindentation. The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov (K-S) test. Secondly, based on best distribution function of each mineral, the Monte Carlo simulations (MCS) and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus. Thirdly, the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established. The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship. The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 9","pages":"Pages 1327-1339"},"PeriodicalIF":11.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the probability distribution of Martian rocks mechanical property based on microscale rock mechanical experiments and accurate grain-based modeling\",\"authors\":\"Shuohui Yin , Yingjie Wang , Jingang Liu\",\"doi\":\"10.1016/j.ijmst.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology. As the mechanical property of Martian rocks is uncertain, it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration. In this paper, a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments (micro-RME), accurate grain-based modeling (AGBM) and upscaling methods based on reliability principles. Firstly, the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer (TIMA) and nanoindentation. The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov (K-S) test. Secondly, based on best distribution function of each mineral, the Monte Carlo simulations (MCS) and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus. Thirdly, the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established. The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship. The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.</div></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 9\",\"pages\":\"Pages 1327-1339\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624001125\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001125","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Predicting the probability distribution of Martian rocks mechanical property based on microscale rock mechanical experiments and accurate grain-based modeling
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology. As the mechanical property of Martian rocks is uncertain, it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration. In this paper, a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments (micro-RME), accurate grain-based modeling (AGBM) and upscaling methods based on reliability principles. Firstly, the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer (TIMA) and nanoindentation. The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov (K-S) test. Secondly, based on best distribution function of each mineral, the Monte Carlo simulations (MCS) and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus. Thirdly, the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established. The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship. The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.