Ziwei Ma , Jasronita Jasni , Mohd Zainal Abidin Ab Kadir , Norhafiz Azis , Yanhua Ma
{"title":"基于领导者传播模拟的双回路超高压交流输电线路屏蔽失效评估的改进型电地理模型","authors":"Ziwei Ma , Jasronita Jasni , Mohd Zainal Abidin Ab Kadir , Norhafiz Azis , Yanhua Ma","doi":"10.1016/j.epsr.2024.111240","DOIUrl":null,"url":null,"abstract":"<div><div>Both the conventional electrogeometric method (EGM) and leader propagation method (LPM) exhibit deficiencies in predicting the shielding failure (SF) performance of UHV transmission lines (TLs). This paper is dedicated to propose an improved EGM (IEGM) model based on LPM simulations. Firstly, a finite element leader inception and propagation model (FEM-LPM) for lightning attachment to a double-circuit UHVAC TL was developed. Secondly, the effects of operating voltage, downward leader (DL) lateral distance, conductor sag, and terrains on the striking distance (SD) were analyzed using this LPM-FEM model. Simulations show that the operating voltage increases the SD of the ground wire. The increase in DL lateral distance slightly increases the upper phase SD. Increases in both conductor sag and slope cause an increase in exposure width of phase lines, which reduces the SF performance of the TL. Finally, an IEGM model adapted to different slope was proposed based on simulations, and the shielding failure rate (SFR) of the TL calculated based on this IEGM model is close to the field observations of a real case. Due to the lack of more statistics on SFR so far, the model is expected to be validated by more practical cases in the future.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"239 ","pages":"Article 111240"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved electrogeometric model for shielding failure evaluation of double-circuit UHVAC transmission lines based on leader propagation simulations\",\"authors\":\"Ziwei Ma , Jasronita Jasni , Mohd Zainal Abidin Ab Kadir , Norhafiz Azis , Yanhua Ma\",\"doi\":\"10.1016/j.epsr.2024.111240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Both the conventional electrogeometric method (EGM) and leader propagation method (LPM) exhibit deficiencies in predicting the shielding failure (SF) performance of UHV transmission lines (TLs). This paper is dedicated to propose an improved EGM (IEGM) model based on LPM simulations. Firstly, a finite element leader inception and propagation model (FEM-LPM) for lightning attachment to a double-circuit UHVAC TL was developed. Secondly, the effects of operating voltage, downward leader (DL) lateral distance, conductor sag, and terrains on the striking distance (SD) were analyzed using this LPM-FEM model. Simulations show that the operating voltage increases the SD of the ground wire. The increase in DL lateral distance slightly increases the upper phase SD. Increases in both conductor sag and slope cause an increase in exposure width of phase lines, which reduces the SF performance of the TL. Finally, an IEGM model adapted to different slope was proposed based on simulations, and the shielding failure rate (SFR) of the TL calculated based on this IEGM model is close to the field observations of a real case. Due to the lack of more statistics on SFR so far, the model is expected to be validated by more practical cases in the future.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"239 \",\"pages\":\"Article 111240\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037877962401126X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877962401126X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improved electrogeometric model for shielding failure evaluation of double-circuit UHVAC transmission lines based on leader propagation simulations
Both the conventional electrogeometric method (EGM) and leader propagation method (LPM) exhibit deficiencies in predicting the shielding failure (SF) performance of UHV transmission lines (TLs). This paper is dedicated to propose an improved EGM (IEGM) model based on LPM simulations. Firstly, a finite element leader inception and propagation model (FEM-LPM) for lightning attachment to a double-circuit UHVAC TL was developed. Secondly, the effects of operating voltage, downward leader (DL) lateral distance, conductor sag, and terrains on the striking distance (SD) were analyzed using this LPM-FEM model. Simulations show that the operating voltage increases the SD of the ground wire. The increase in DL lateral distance slightly increases the upper phase SD. Increases in both conductor sag and slope cause an increase in exposure width of phase lines, which reduces the SF performance of the TL. Finally, an IEGM model adapted to different slope was proposed based on simulations, and the shielding failure rate (SFR) of the TL calculated based on this IEGM model is close to the field observations of a real case. Due to the lack of more statistics on SFR so far, the model is expected to be validated by more practical cases in the future.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.