{"title":"优化点对点能源共享的动态框架:提高智能电网的本地消耗并减少电力损耗","authors":"Jinglin He , Tao Feng , Rengan Wei","doi":"10.1016/j.epsr.2024.111215","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of distributed energy resources has enabled peer-to-peer energy sharing (P2PES), offering an innovative approach to energy planning. While previous research has focused on the economic benefits of P2PES for users, it often overlooks strategic network responses. This paper presents a P2PES framework that incorporates dynamic network architecture. The framework's core involves developing a P2PES model aimed at increasing local energy consumption and reducing electrical losses during peer-to-peer (P2P) exchanges. Additionally, a dynamic grid structure model facilitates active grid operator participation in optimizing grid structure and reducing power losses. These dual models synergize, sharing information to optimize P2PES programs, network operations, and energy utilization. The framework's coordination is achieved through an algorithm combining a matching mechanism with a branch exchange method, refined iteratively to enhance performance. Numerical analysis demonstrates the framework's effectiveness, showing an 18.31 % improvement with joint optimization strategies. Additionally, incorporating distribution system operator switching strategies results in a 31.69 % reduction in total network power losses and a 2.81 % increase in local energy consumption. This highlights not only buyer strategies but also dynamic network evolution, emphasizing the framework's practical feasibility in electrical engineering.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"239 ","pages":"Article 111215"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic framework for optimizing peer-to-peer energy sharing: Enhancing local consumption and reducing power losses in smart grids\",\"authors\":\"Jinglin He , Tao Feng , Rengan Wei\",\"doi\":\"10.1016/j.epsr.2024.111215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of distributed energy resources has enabled peer-to-peer energy sharing (P2PES), offering an innovative approach to energy planning. While previous research has focused on the economic benefits of P2PES for users, it often overlooks strategic network responses. This paper presents a P2PES framework that incorporates dynamic network architecture. The framework's core involves developing a P2PES model aimed at increasing local energy consumption and reducing electrical losses during peer-to-peer (P2P) exchanges. Additionally, a dynamic grid structure model facilitates active grid operator participation in optimizing grid structure and reducing power losses. These dual models synergize, sharing information to optimize P2PES programs, network operations, and energy utilization. The framework's coordination is achieved through an algorithm combining a matching mechanism with a branch exchange method, refined iteratively to enhance performance. Numerical analysis demonstrates the framework's effectiveness, showing an 18.31 % improvement with joint optimization strategies. Additionally, incorporating distribution system operator switching strategies results in a 31.69 % reduction in total network power losses and a 2.81 % increase in local energy consumption. This highlights not only buyer strategies but also dynamic network evolution, emphasizing the framework's practical feasibility in electrical engineering.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"239 \",\"pages\":\"Article 111215\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624011015\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624011015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A dynamic framework for optimizing peer-to-peer energy sharing: Enhancing local consumption and reducing power losses in smart grids
The integration of distributed energy resources has enabled peer-to-peer energy sharing (P2PES), offering an innovative approach to energy planning. While previous research has focused on the economic benefits of P2PES for users, it often overlooks strategic network responses. This paper presents a P2PES framework that incorporates dynamic network architecture. The framework's core involves developing a P2PES model aimed at increasing local energy consumption and reducing electrical losses during peer-to-peer (P2P) exchanges. Additionally, a dynamic grid structure model facilitates active grid operator participation in optimizing grid structure and reducing power losses. These dual models synergize, sharing information to optimize P2PES programs, network operations, and energy utilization. The framework's coordination is achieved through an algorithm combining a matching mechanism with a branch exchange method, refined iteratively to enhance performance. Numerical analysis demonstrates the framework's effectiveness, showing an 18.31 % improvement with joint optimization strategies. Additionally, incorporating distribution system operator switching strategies results in a 31.69 % reduction in total network power losses and a 2.81 % increase in local energy consumption. This highlights not only buyer strategies but also dynamic network evolution, emphasizing the framework's practical feasibility in electrical engineering.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.