投影几何、Q-多项式结构和量子群

IF 0.7 3区 数学 Q2 MATHEMATICS
Paul Terwilliger
{"title":"投影几何、Q-多项式结构和量子群","authors":"Paul Terwilliger","doi":"10.1016/j.disc.2024.114321","DOIUrl":null,"url":null,"abstract":"<div><div>In 2023 we obtained a <em>Q</em>-polynomial structure for the projective geometry <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. In the present paper, we display a more general <em>Q</em>-polynomial structure for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. Our new <em>Q</em>-polynomial structure is defined using a free parameter <em>φ</em> that takes any positive real value. For <span><math><mi>φ</mi><mo>=</mo><mn>1</mn></math></span> we recover the original <em>Q</em>-polynomial structure. We interpret the new <em>Q</em>-polynomial structure using the quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> in the equitable presentation. We use the new <em>Q</em>-polynomial structure to obtain analogs of the four split decompositions that appear in the theory of <em>Q</em>-polynomial distance-regular graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114321"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projective geometries, Q-polynomial structures, and quantum groups\",\"authors\":\"Paul Terwilliger\",\"doi\":\"10.1016/j.disc.2024.114321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2023 we obtained a <em>Q</em>-polynomial structure for the projective geometry <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. In the present paper, we display a more general <em>Q</em>-polynomial structure for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. Our new <em>Q</em>-polynomial structure is defined using a free parameter <em>φ</em> that takes any positive real value. For <span><math><mi>φ</mi><mo>=</mo><mn>1</mn></math></span> we recover the original <em>Q</em>-polynomial structure. We interpret the new <em>Q</em>-polynomial structure using the quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> in the equitable presentation. We use the new <em>Q</em>-polynomial structure to obtain analogs of the four split decompositions that appear in the theory of <em>Q</em>-polynomial distance-regular graphs.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 2\",\"pages\":\"Article 114321\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004527\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004527","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2023 年,我们获得了投影几何 LN(q) 的 Q 多项式结构。在本文中,我们为 LN(q) 展示了一种更通用的 Q 多项式结构。我们的新 Q 多项式结构使用自由参数 φ 定义,该参数可取任意正实值。当 φ=1 时,我们将恢复原来的 Q 多项式结构。我们用衡平表示法中的量子群 Uq1/2(sl2)来解释新的 Q 多项式结构。我们利用新的 Q 多项式结构得到了 Q 多项式距离规则图理论中出现的四种分裂分解的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective geometries, Q-polynomial structures, and quantum groups
In 2023 we obtained a Q-polynomial structure for the projective geometry LN(q). In the present paper, we display a more general Q-polynomial structure for LN(q). Our new Q-polynomial structure is defined using a free parameter φ that takes any positive real value. For φ=1 we recover the original Q-polynomial structure. We interpret the new Q-polynomial structure using the quantum group Uq1/2(sl2) in the equitable presentation. We use the new Q-polynomial structure to obtain analogs of the four split decompositions that appear in the theory of Q-polynomial distance-regular graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信