Weirong Qian , Wenbo Li , Pengcheng Sha , Junbo Deng , Guanjun Zhang , Yuhang Shi , Dingge Yang , Hao Wu , Yanhua Han
{"title":"雷击下 ±800 kV 超高压直流输电系统中光 CT 测量不准确导致的单极阻塞事故分析","authors":"Weirong Qian , Wenbo Li , Pengcheng Sha , Junbo Deng , Guanjun Zhang , Yuhang Shi , Dingge Yang , Hao Wu , Yanhua Han","doi":"10.1016/j.epsr.2024.111212","DOIUrl":null,"url":null,"abstract":"<div><div>The ultra-high voltage direct current (UHVDC) power transmission systems usually transmit a capacity of 6-8 GW, their stability and reliability are of vital importance to the large power grid. This paper analyses a mono-pole blocking accident caused by the inaccurate measurement of optical current transformer (OCT) when the pole line of Shaanbei-Wuhan ±800 kV UHVDC transmission system was struck by lightning. Combined with electromagnetic transient simulation of the UHVDC transmission system, digital simulation and in-plant testing of the optical CT, a comprehensive understanding of the factors contributing to the accident is achieved. It reveals that optical CT measurement anomalies were significant contributors to the misoperation of protective relays, which led to the mono-pole blocking accident. Based on the simulations of optical CT under high peak currents and high di/dt conditions caused by lightning strike, the importance of proper setting of demodulation algorithm parameters in optical CT to avoid inaccurate measurements is emphasized. Through in-plant testing and steady state current accuracy verification, the reasonableness of demodulation parameters is verified. Simulation results illustrate the challenges in measuring very fast transient current accurately, which are the premise and guarantee of stable operation of UHVDC transmission systems under lightning strike.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"239 ","pages":"Article 111212"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mono-pole blocking accident analysis caused by inaccurate measurement of optical CT in ±800 kV UHVDC transmission system under lightning strike\",\"authors\":\"Weirong Qian , Wenbo Li , Pengcheng Sha , Junbo Deng , Guanjun Zhang , Yuhang Shi , Dingge Yang , Hao Wu , Yanhua Han\",\"doi\":\"10.1016/j.epsr.2024.111212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultra-high voltage direct current (UHVDC) power transmission systems usually transmit a capacity of 6-8 GW, their stability and reliability are of vital importance to the large power grid. This paper analyses a mono-pole blocking accident caused by the inaccurate measurement of optical current transformer (OCT) when the pole line of Shaanbei-Wuhan ±800 kV UHVDC transmission system was struck by lightning. Combined with electromagnetic transient simulation of the UHVDC transmission system, digital simulation and in-plant testing of the optical CT, a comprehensive understanding of the factors contributing to the accident is achieved. It reveals that optical CT measurement anomalies were significant contributors to the misoperation of protective relays, which led to the mono-pole blocking accident. Based on the simulations of optical CT under high peak currents and high di/dt conditions caused by lightning strike, the importance of proper setting of demodulation algorithm parameters in optical CT to avoid inaccurate measurements is emphasized. Through in-plant testing and steady state current accuracy verification, the reasonableness of demodulation parameters is verified. Simulation results illustrate the challenges in measuring very fast transient current accurately, which are the premise and guarantee of stable operation of UHVDC transmission systems under lightning strike.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"239 \",\"pages\":\"Article 111212\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624010988\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624010988","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mono-pole blocking accident analysis caused by inaccurate measurement of optical CT in ±800 kV UHVDC transmission system under lightning strike
The ultra-high voltage direct current (UHVDC) power transmission systems usually transmit a capacity of 6-8 GW, their stability and reliability are of vital importance to the large power grid. This paper analyses a mono-pole blocking accident caused by the inaccurate measurement of optical current transformer (OCT) when the pole line of Shaanbei-Wuhan ±800 kV UHVDC transmission system was struck by lightning. Combined with electromagnetic transient simulation of the UHVDC transmission system, digital simulation and in-plant testing of the optical CT, a comprehensive understanding of the factors contributing to the accident is achieved. It reveals that optical CT measurement anomalies were significant contributors to the misoperation of protective relays, which led to the mono-pole blocking accident. Based on the simulations of optical CT under high peak currents and high di/dt conditions caused by lightning strike, the importance of proper setting of demodulation algorithm parameters in optical CT to avoid inaccurate measurements is emphasized. Through in-plant testing and steady state current accuracy verification, the reasonableness of demodulation parameters is verified. Simulation results illustrate the challenges in measuring very fast transient current accurately, which are the premise and guarantee of stable operation of UHVDC transmission systems under lightning strike.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.