Brette S. Harris, Kelly J. Rozanitis, Bruce Sutherland, Paul G. Myers, Kurt O. Konhauser, Murray K. Gingras
{"title":"生物稳定:微生物与硅质海洋沉积物之间相互作用的参数化","authors":"Brette S. Harris, Kelly J. Rozanitis, Bruce Sutherland, Paul G. Myers, Kurt O. Konhauser, Murray K. Gingras","doi":"10.1016/j.earscirev.2024.104976","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"259 ","pages":"Article 104976"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biostabilization: Parameterizing the interactions between microorganisms and siliciclastic marine sediments\",\"authors\":\"Brette S. Harris, Kelly J. Rozanitis, Bruce Sutherland, Paul G. Myers, Kurt O. Konhauser, Murray K. Gingras\",\"doi\":\"10.1016/j.earscirev.2024.104976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.</div></div>\",\"PeriodicalId\":11483,\"journal\":{\"name\":\"Earth-Science Reviews\",\"volume\":\"259 \",\"pages\":\"Article 104976\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth-Science Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012825224003040\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224003040","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Biostabilization: Parameterizing the interactions between microorganisms and siliciclastic marine sediments
Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.