生物稳定:微生物与硅质海洋沉积物之间相互作用的参数化

IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Brette S. Harris, Kelly J. Rozanitis, Bruce Sutherland, Paul G. Myers, Kurt O. Konhauser, Murray K. Gingras
{"title":"生物稳定:微生物与硅质海洋沉积物之间相互作用的参数化","authors":"Brette S. Harris,&nbsp;Kelly J. Rozanitis,&nbsp;Bruce Sutherland,&nbsp;Paul G. Myers,&nbsp;Kurt O. Konhauser,&nbsp;Murray K. Gingras","doi":"10.1016/j.earscirev.2024.104976","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biostabilization: Parameterizing the interactions between microorganisms and siliciclastic marine sediments\",\"authors\":\"Brette S. Harris,&nbsp;Kelly J. Rozanitis,&nbsp;Bruce Sutherland,&nbsp;Paul G. Myers,&nbsp;Kurt O. Konhauser,&nbsp;Murray K. Gingras\",\"doi\":\"10.1016/j.earscirev.2024.104976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.</div></div>\",\"PeriodicalId\":11483,\"journal\":{\"name\":\"Earth-Science Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth-Science Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012825224003040\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224003040","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biostabilization: Parameterizing the interactions between microorganisms and siliciclastic marine sediments
Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信