冰冻土壤中热量和质量传递的孔隙尺度晶格玻尔兹曼模型

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Zongwei Gan, Zheng Wang, Yaning Zhang, Wenke Zhao, Bingxi Li
{"title":"冰冻土壤中热量和质量传递的孔隙尺度晶格玻尔兹曼模型","authors":"Zongwei Gan,&nbsp;Zheng Wang,&nbsp;Yaning Zhang,&nbsp;Wenke Zhao,&nbsp;Bingxi Li","doi":"10.1016/j.ijheatfluidflow.2024.109634","DOIUrl":null,"url":null,"abstract":"<div><div>The water and thermal characteristics of frozen soil will change during the freezing process, leading to frost heave disasters. Traditional macroscopic numerical methods have some difficulty in dealing with water and heat transport problems in frozen soil. The lattice Boltzmann method (LBM) can overcome these limitations by effectively capturing the complex interactions within porous media. In this study, a pore-scale lattice Boltzmann (LB) model was developed to simulate the coupled heat and mass transfer processes in frozen soil. The developed model incorporates a multicomponent multiphase pseudopotential and an enthalpy-based phase transition model. The relative errors of the model were 0.92 % ∼ 8.01 %, 2.46 % ∼ 14.14 %, and 0.02 % ∼ 13.56 % for the water contents at 12 h, 24 h, and 50 h, respectively, indicating that the current LB model can accurately describe the heat and water transfer characteristics in frozen soil. The inclusion of the freezing suction force in the model can reflect the actual water suction and transport process, resulting in variations of water content at different depths in the frozen soil.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109634"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil\",\"authors\":\"Zongwei Gan,&nbsp;Zheng Wang,&nbsp;Yaning Zhang,&nbsp;Wenke Zhao,&nbsp;Bingxi Li\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The water and thermal characteristics of frozen soil will change during the freezing process, leading to frost heave disasters. Traditional macroscopic numerical methods have some difficulty in dealing with water and heat transport problems in frozen soil. The lattice Boltzmann method (LBM) can overcome these limitations by effectively capturing the complex interactions within porous media. In this study, a pore-scale lattice Boltzmann (LB) model was developed to simulate the coupled heat and mass transfer processes in frozen soil. The developed model incorporates a multicomponent multiphase pseudopotential and an enthalpy-based phase transition model. The relative errors of the model were 0.92 % ∼ 8.01 %, 2.46 % ∼ 14.14 %, and 0.02 % ∼ 13.56 % for the water contents at 12 h, 24 h, and 50 h, respectively, indicating that the current LB model can accurately describe the heat and water transfer characteristics in frozen soil. The inclusion of the freezing suction force in the model can reflect the actual water suction and transport process, resulting in variations of water content at different depths in the frozen soil.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"110 \",\"pages\":\"Article 109634\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X2400359X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X2400359X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在冻结过程中,冻土的水特性和热特性会发生变化,从而导致冻胀灾害。传统的宏观数值方法在处理冻土中的水和热传输问题时存在一些困难。晶格玻尔兹曼方法(LBM)可以有效地捕捉多孔介质中复杂的相互作用,从而克服这些局限性。本研究开发了一种孔隙尺度的晶格玻尔兹曼(LB)模型,用于模拟冻土中的热量和质量耦合传输过程。该模型包含一个多成分多相伪势和一个基于焓的相变模型。该模型在 12 h、24 h 和 50 h 时的含水量相对误差分别为 0.92 % ∼ 8.01 %、2.46 % ∼ 14.14 % 和 0.02 % ∼ 13.56 %,表明当前的 LB 模型能够准确描述冻土中的传热和传质特性。在模型中加入冻结吸力可以反映实际的吸水和输水过程,从而导致冻土不同深度含水量的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil

Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil
The water and thermal characteristics of frozen soil will change during the freezing process, leading to frost heave disasters. Traditional macroscopic numerical methods have some difficulty in dealing with water and heat transport problems in frozen soil. The lattice Boltzmann method (LBM) can overcome these limitations by effectively capturing the complex interactions within porous media. In this study, a pore-scale lattice Boltzmann (LB) model was developed to simulate the coupled heat and mass transfer processes in frozen soil. The developed model incorporates a multicomponent multiphase pseudopotential and an enthalpy-based phase transition model. The relative errors of the model were 0.92 % ∼ 8.01 %, 2.46 % ∼ 14.14 %, and 0.02 % ∼ 13.56 % for the water contents at 12 h, 24 h, and 50 h, respectively, indicating that the current LB model can accurately describe the heat and water transfer characteristics in frozen soil. The inclusion of the freezing suction force in the model can reflect the actual water suction and transport process, resulting in variations of water content at different depths in the frozen soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信