可压缩流体-粒子相互作用系统剪切粘度消失极限的最佳收敛速率

IF 2.4 2区 数学 Q1 MATHEMATICS
Bingyuan Huang , Yingshan Chen , Limei Zhu
{"title":"可压缩流体-粒子相互作用系统剪切粘度消失极限的最佳收敛速率","authors":"Bingyuan Huang ,&nbsp;Yingshan Chen ,&nbsp;Limei Zhu","doi":"10.1016/j.jde.2024.10.033","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity <span><math><mi>μ</mi><mo>=</mo><mi>κ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> goes to zero without any smallness assumption on the initial and boundary data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1792-1823"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence rate of the vanishing shear viscosity limit for a compressible fluid-particle interaction system\",\"authors\":\"Bingyuan Huang ,&nbsp;Yingshan Chen ,&nbsp;Limei Zhu\",\"doi\":\"10.1016/j.jde.2024.10.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity <span><math><mi>μ</mi><mo>=</mo><mi>κ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> goes to zero without any smallness assumption on the initial and boundary data.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1792-1823\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006892\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006892","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有圆柱对称性的可压缩流体-粒子相互作用系统的初始边界值问题。我们推导了显式普朗特边界层方程,并证明了当剪切粘度 μ=κρβ 变为零时,边界层剖面的全局时间稳定性和最佳收敛速率,而无需对初始数据和边界数据做任何微小性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence rate of the vanishing shear viscosity limit for a compressible fluid-particle interaction system
We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity μ=κρβ goes to zero without any smallness assumption on the initial and boundary data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信