{"title":"可压缩流体-粒子相互作用系统剪切粘度消失极限的最佳收敛速率","authors":"Bingyuan Huang , Yingshan Chen , Limei Zhu","doi":"10.1016/j.jde.2024.10.033","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity <span><math><mi>μ</mi><mo>=</mo><mi>κ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> goes to zero without any smallness assumption on the initial and boundary data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1792-1823"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence rate of the vanishing shear viscosity limit for a compressible fluid-particle interaction system\",\"authors\":\"Bingyuan Huang , Yingshan Chen , Limei Zhu\",\"doi\":\"10.1016/j.jde.2024.10.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity <span><math><mi>μ</mi><mo>=</mo><mi>κ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> goes to zero without any smallness assumption on the initial and boundary data.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1792-1823\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006892\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006892","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal convergence rate of the vanishing shear viscosity limit for a compressible fluid-particle interaction system
We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity goes to zero without any smallness assumption on the initial and boundary data.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics